Applications of inductive definitions and choice
principles to program synthesis

Ulrich Berger and Monika Seisenberger
{u.berger, csmona}@swansea.ac.uk

University of Wales Swansea

Abstract. We describe two methods of extracting constructive content
from classical proofs, focusing on theorems involving infinite sequences
and nonconstructive choice principles. The first method removes any ref-
erence to infinite sequences and transforms the theorem into a system of
inductive definitions, the other applies a combination of Goédel’s negative-
and Friedman’s A-translation. Both approaches are explained by means
of a case study on Higman’s Lemma and its well-known classical proof
due to Nash-Williams. We also discuss some proof-theoretic optimiza-
tions that were crucial for the formalization and implementation of this
work in the interactive proof system Minlog.

1 Introduction

This paper is concerned with the problem of finding constructive content in non-
constructive mathematical theorems. By the constructive content of a theorem
we mean

- possibly, a constructive reformulation of the statement of the theorem,

- a constructive proof corresponding to the given nonconstructive proof,

- a program extracted from the proof that computes witnesses of existential
statements in the theorem.

In the paper we will

- describe two different methods of transforming a nonconstructive proof into
a constructive proof and critically assess them from a constructive point of
view,

- sketch how to extract programs from these proofs and discuss the nature of
these programs,

- discuss proof-theoretic optimizations which are of independent interest and
seem to be necessary in order to make these methods feasible for the imple-
mentation of larger case studies in an interactive theorem prover.

The overall aim of the paper is to give insight into possible constructive aspects
hidden in nonconstructive theorems and describe - in a nontechnical way - how
these aspects can be brought to light and computationally exploited. The re-
sults presented here summarizes work done by the authors over the past few

years [Sei03,BO04,BBS02,BSS01,Sei01] largely as part of the MINLOG group at
the University of Munich [BBST98].

We will focus on theorems about infinite sequences as they typically occur
in analysis and infinitary combinatorics. Our running example and main case
study will be Higman’s Lemma [High2]! and its classical proof due to Nash-
Williams [NW63] which we will briefly describe now. Higman’s Lemma is con-
cerned with well-quasiorders (wqos), that is, binary relations (A4,<4) on a set
A of letters with the property that each infinite sequence (a;);c., of letters is
‘good’, i.e. there are indices ¢ < j such that a; <4 a;. (The simplest examples of
wqos are finite sets with equality.) From (A, <4) one can derive a binary relation
(A*,<a-) on the set A* of (finite) words over the alphabet A where v <4+ w
means that v is embeddable into w, i.e. v can be obtained from w by deleting
some letters or replacing them with ones which are smaller with respect to < 4.

Higman’s Lemma If (4, <,4) is a well-quasiorder, so is (A*, <x).

Proof (Nash-Williams, 1963). Our assumption is that every infinite sequence of
letters is good. We have to prove that every infinite sequence of words is good.
That a bad sequence of words is impossible is an immediate consequence of the
following two facts:

1. For every bad sequence (wy,)new of words there exists a bad sequence (w!,)new
which is lexicographically smaller, i.e. there is an index ng, such that w; = w;
for all i < ng and wj,, is a proper initial segment of wp, .

2. If there exists a bad sequence of words, then there also exists a minimal bad
sequence of words (with respect to the above lexicographic ordering).

Proof of 1. If (wy)nee is bad, then all w, must be nonempty, i.e. of the form
Wy, = Up*an. As (A, <4) is a wqo, the sequence of letters (a;,)ne, must contain a
‘monotone’ subsequence an, <4 ap, <4 ... with strictly increasing indices n;. To
obtain such a subsequence, one must apply a nonconstructive choice principle (we
omit details). Now, the sequence wy, ..., Wny—1, Ung, Un,, - - - 18 lexicographically
smaller and also bad, since, if it were good, then so would be (wy,)new-

Proof of 2. Assume there is a bad sequence of words. We define a minimal bad se-
quence of words by repeated nonconstructive choices: if words wy, . .., w,_1 have
already been chosen such that they begin a bad sequence, we choose a shortest
word w,, such that wy,...,w,—1,w, begins bad sequence as well. Clearly, the
resulting sequence (wp)ne, is bad and lexicographically minimal.

The aspect of Nash-Williams’ proof which is most problematic from a con-
structive point of view is not so much the use of classical logic, but the definition
of infinite sequences in a constructively unacceptable way. One way around this
problem is to reformulate the statement of the theorem in such a way that any
reference to infinite objects is avoided. In section 2 we will do this, following

! Higman’s lemma is used, for example, in term rewriting theory for termination
proofs [CTB94,Tou02].

an approach of Coquand and Fridlender [CF94]. The main idea is to express
the property of being a well-quasiorder by an inductive definition. In [CF94] the
case A = {0,1} was treated whereas we allow an arbitrary alphabet A with a
decidable well-quasiorder.

In section 3 we take another approach: we leave the statement of Higman’s
Lemma as it is, but apply a combination of Godel’s negative- and Friedman’
A-translation [Fri78] to constructivize the proof. This idea goes back to Consta-
ble and Murthy [CM91] who formalized Higman’s Lemma in a system of second
order arithmetic representing infinite sequences by their graphs and proving
the necessary choice principles by impredicative comprehension and classical
logic [Mur90]. Our formalization differs from theirs in that we work in a finite
type system where infinite sequences are available as objects type N — p. This
has the advantage that the formalization of Nash-Williams’ proof is technically
simpler, however we have to include the nonconstructive choice principles as
axioms. Applying negative- and A-translation we obtain a proof which is con-
structive modulo the translated choice principles. These translated principles can
be reduced to a relativized version of bar induction, a principle whose construc-
tive status is controversial. Nevertheless it is possible to extract an executable
program that computes for any infinite sequence of words indices ¢ < j witness-
ing that it is good. However, to show the termination of this program one again
needs these constructively questionable principles.

Analyzing the programs extracted from the respective proofs we will see that
both use recursion along certain wellfounded trees which, however, are given in
very different ways. The program extracted from the inductive proof works - as
expected - on inductively defined trees, while the program from the A-translated
proof recurs on the wellfounded tree given by a total continuous functional of
type two.

We will also discuss some proof-theoretic optimizations which were crucial
for fully formalizing and implementing this case study. The logical and inductive
rules of the proof calculus are modified in order to be able to discard redundant
parts of the programs already at extraction time, and the combined Godel/ A-
translation is optimized with the effect that extracted programs have much lower
types and a simpler control structure.

Proof-theoretically, both methods yield only suboptimal results as Higman’s
Lemma is in fact provable in ACAg, a system that is conservative over arith-
metic ([SS85,Gir87], see also [Sim88,dJP77,Sch79,MR90,RS93]). The interest in
our methods lies in the fact that they both yield proofs and programs that make
constructive use of the crucial ideas in Nash-Williams’ nonconstructive proof,
whereas the proof in [SS85] does not seem to be related to Nash-Williams’ proof.
The same applies to another inductive proof given by Fridlender [Fri97] which
is based on an intuitionistic proof of Veldman (published in [Vel04]). Veldman’s
proof does not require decidability of <4 and uses the idea of Higman’s original
proof. The proof-theoretic strength of a form of the minimal bad sequence argu-
ment that is sufficiently general for Nash-Williams’ proof has been analyzed by
Marcone [Mar96].

2 Inductive definitions

In this section we describe how Nash-Williams’ classical proof of Higman’s
Lemma given in the introduction may be transformed into a constructive in-
ductive argument. The crucial idea, due to Coquand and Fridlender [CF94],
is to reformulate the notion of a well-quasiorder without referring to infinite
sequences, but using a (generalized) inductive definition instead. For a finite se-
quence as := [ag, - ..,an—1] of elements in (A4, <4), let Good as be the property
that there are ¢ < j < m such that a; < a; (hence, an infinite sequence is good
iff all its finite initial segments are). Define a predicate Bary C A* inductively
by

Good as VaBar as x a

Bar as Bar as

Classically, Bar as means that every infinite sequence starting with as is good.
Hence, classically, (A4, <4) is a wqo iff Bar [] holds. The ‘if’ part of this equiva-
lence can be proven easily using the induction principle for Bar

Vas (Good as — B(as)) Vas (Va B(as * a) — B(as))
Vas (Bar as — B(as))

with B(as) := ‘every infinite sequence extending as is good’. The converse di-
rection requires a non-constructive choice principle which will be discussed in
detail in the next section.

Inductive formulation of Higman’s Lemma Bar4 [| — Bara- [].

In the following we sketch a constructive proof of this reformulation of Hig-
man’s Lemma that makes use of the essential ideas in Nash-Williams’ proof. For
simplicity we first restrict ourselves to a finite alphabet A (well-quasiordered by
equality). Our goal is to prove Bar4- []. In the first part of the classical proof
one defines from a bad sequence (wy,)n<. a lexicographically smaller bad se-
quence of the form wo,..., Wno—1,Vng,Vn,,.-.. We mimic this on the level of
finite sequences by defining a relation <yw (NW for Nash-Williams) such that
vs <yw ws holds iff all words in ws are nonempty and vs is obtained from ws
be the following process. Take a letter a that occurs as the last letter of some
word in ws and scan through ws from left to right, chopping off the last letter
of the current word if this letter is a, respectively deleting the current word if it
does not end with a but some word ending with a has been encountered before.
The contrapositive of the first part of the classical proof, “if there is no bad se-
quence which is lexicographically smaller than (wy,)new, then (wy,)new is good’,
corresponds now to

YVws (Vus(vs <nw ws — Bar 4+ vs) — Bar - ws) (+)

This formula immediately entails Bar 4+ [], since for ws = []| the premise of (+)
trivially holds ([] has no <nw-predecessors). The main idea for proving (4) is to
introduce an inductive predicate Bars on A*** and a function Folder: A** — A***

such that Bars (Folder ws) is equivalent to Yus(vs <nw ws — Bara« vs). The
inductive definition of Bars parallels Bar:

Good vs; Vw Bars [vsg, . . ., U8; % W, ... VSp_1]

Bars[vso, ..., v8p—1] Bars[vsg, ..., v8p—1]

The statement Vws.Bars (Folder ws) — Bar 4+ ws, which is equivalent to (+), can
be proven by main induction on the number of letters that do not occur as an end
letter in ws and side induction on Bars (Folder ws). More precisely, given ws with
Bars (Folder ws) and the respective induction hypotheses one shows Vw Bar 4+ ws*
w by structural induction on w, and then concludes Bara+ ws with the second
introduction for Bar. This second side induction corresponds roughly to the
definition of the minimal bad sequence in the second part of the classical proof.
To prove the induction step the decidability of equality on A (<4 in the general
case) is used.

An inductive proof of Higman’s Lemma for an arbitrary well-quasiordered
alphabet - not only a finite one - is given in [Sei03] (see also [Sei01] for an
earlier version). In this case, the induction on the number of letters that do not
occur as last letters becomes an induction on the predicate Bar 4. Furthermore,
the sequence structure, given by the predicate Folder, is replaced by a structure
involving trees.

Formalization and Program Extraction We formalized and implemented
the inductive proof of Higman’s Lemma for a finite alphabet in the Minlog
system. In order to obtain interesting computational content we proved from
Bara- [] the original statement of Higman’s lemma, Y(wp)new 3i,5. ¢ < § A
w; <4+ wj, using induction on Bar 4+, and extracted a program from the latter
proof. For the special case A = {0,1} this may be found in the Minlog reposi-
tory (www.minlog-system.de). The resulting program contains three nested re-
cursions corresponding to the inductions in the proof. Its size as a Minlog term
is surprisingly small — just about 50 lines — which is mainly due to refinements
of the logic resulting in an optimized program extraction process. In order to
explain these refinements, we need some basic facts about realizability, the proof-
theoretic method underlying program extraction.

Realizability translates formulas into (possibly higher order) types essentially
by removing all dependencies of formulas from objects. For example, a universal
formula Va* A(x) translates into a function type p — o (where A translates to o)
and an inductive predicate, as for example Bar as, translates into a type of well-
founded trees. The logical rules are translated into natural operations on these
types. For example, V-introduction and -elimination translate into A-abstraction
and application, and introduction and elimination rules for an inductive defini-
tion become constructors and recursion operators for trees. Hence, extracted pro-
grams are higher type functional programs with iteration constructs restricted
to (terminating) structural recursion.

The first refinement is achieved by distinguishing between two types of uni-
versal quantifiers, the usual quantifier V and a ‘noncomputational’ quantifier

V"¢, The meaning of V"“z* A(x) is roughly ‘A(z) has been established for all x
with a proof whose computational content does not depend on x’. Consequently
one doesn’t assign to V"a” A(zx) the type p — o, but just o. Technically, the
computational independence of a proof from an object variable is handled by a
strengthened variable condition. The second refinement concerns the distinction
between inductive definitions with and without computational content. For in-
stance it is convenient to formalize the embeddability relation between words by
means of an inductive definition,

v <* w v <* w

[] <*] v <* wkxa vxa <* wxa’

even though this relation is decidable and could therefore be represented by
a boolean function. Normally, such an inductive definition would introduce an
inductive datatype into the program, but, if <* is declared as an inductive
predicate without computational content, no extra data type is introduced. Of
course, the introduction of inductive predicates without computational content
is subject to extra conditions that ensure the soundness of the system. The
distinction between logical constructs with and without computational content is
similar to the distinction Set/Prop in intuitionistic type theory (see e.g. [PW93]),
but seems to be more flexible.

3 Classical dependent choice

Now we show how to extract computational content directly from Nash-Williams’
proof. Recall that in this proof one derives a contradiction from the assumption
that a given sequence of words, let us call it f, is bad. We use Godel’s negative
translation combined with the Friedman’s A-translation [Fri78] to transform
this classical proof into a constructive proof. For convenience we will in the
following call this translation simply A-translation although we mean in fact the
combination of Gédel- and A-translation. Hence, for a given existential formula
A, the A-translation of a formula B, written B, is obtained by double negating
all atomic and existential formulas (where —C' is defined as C' — L) and replacing
1 (falsity) by the formula A. In the case of Higman’s Lemma, A will be the
formula expressing that f is good, i.e.

A=3i4.0<j A FG) <" 1)

Under this translation all axioms concerning classical logic become intuition-
istically provable, and instances of mathematical principles like induction are
translated into (different) instances of the same principle. Most importantly, the
(false) assumption that f is bad is translated into an intuitionistically provable
formula. Altogether one obtains an intuitionistic proof of the translation of L,
i.e. A, from which a program computing indices i,j with f(i) <* f(j) can be
extracted. However this is not quite the full story since we did not say how to
deal with the nonconstructive choices that occur in Nash-Williams’ proof. The

kind of choices used there are captured by the following scheme of dependent
choice

DC B([]) AVas(B(xs) — Jz B(as * x)) — 3gVn B(gn)

where gn := [g(0),. .., g(n—1)]. In Nash-Williams’ proof this scheme is used, for
example, with the predicate B(xs) := ‘as is a list of words that can be extended
to an infinite bad sequence of words and if s is nonempty then the last word in
as is as short as possible’. The A-translation of DC is (logically equivalent to)

DC* Hyp, A Hyp, A Hyps — A

where

Hyp, = B([])*
Hyp, = Vas(B(xs)4 A (3x B(as * 2)* — A) — A)
Hyp; = 3g¥n B(gn)* — A

Unlike induction on natural numbers, DC does not prove intuitionistically its
A-translation. However, DC4 can be reduced intuitionistically to relativized
bar induction [Coq91,Ber04] (a.k.a. extended bar induction or bar induction on
species) a scheme whose constructive status is at least debatable [Luc73,Tro73].
We do not go into this reduction here, but instead informally explain how to
directly interpret DCA computationally in terms of realizability.

The idea of the following interpretation of DC# is due to Berardi, Bezem
and Coquand [BBC98]. In order to realize DC* we assume we are given realizers
G1, G2, Gs of the hypotheses Hyp,, Hyp,, Hyp; respectively. We have to compute
a realizer of A. We use G3. So, we need to compute some function g and a
realizer h of Vn B(gn)4. We compute g and h in stages. Suppose we have already
computed finite approximations xs and ys to g and h, i.e. as = [zg,...,Tn-1] ,
¥ = [Yo,- -, Yn] and y; realizes B([xo,...,r;_1])? for i <n (we get started by
setting yo := G1). We run G3 with the arguments g and h defined by

. r; ifi<n . 4 ifi<n

g(l):{o ifi>n h(l):{gee below ifi>n

If G3 happens not to query h at any ¢ > n, then we are done. If it does, we
compute a realizer h(i) of B(as * 0 % ... % 0)?4 (with i — n 0s) using a realizer
of A — B(ws x0x...%0)" (since B4 is logically equivalent to a formula of
the form C — A such a realizer trivially exists). So, we are back to the task of
computing a realizer of A. This time we use the realizer G,. We apply G2 to
our as and y, (we assumed vy, realizes B(2s)”) and some realizer of the formula
3z B(as *)4 — A which we compute as follows: given z and a realizer y of
B(xs * x)? we need to compute a realizer of A. We do this by recurring to our
main process, but now with the larger approximations as * x and ys * y. Luckily,
each branch of the whole computation will eventually terminate because G5 may
assumed to be G3 continuous and therefore querying its arguments at finitely
many values only in order to compute a result.

The latter assumption can be justified by a model of realizability in which
all functions are continuous. Such a model can, for example, be constructed
from the total elements of the Scott/Ershov hierarchy of partial continuous
functionals over the flat domains of partial booleans and partial natural num-
bers [Sco70,Ers77,Tro73,BO04]. It is important to note that models where all
functionals are computable —like, for example, HFEO [Tro73], or, more generally,
the effective topos [Hyl82]- cannot be used here, since in order for the argument
given above to be valid the sequences g and h approximated by the xs and ys have
to be (possibly non-computable) free choice sequences (a related phenomenon is
the fact that the unit interval of recursive reals is not compact).

The recursive process described above can written more formally as follows. A
realizer of A is computed as &([], [G1]) where for arguments s, ys with lengths n
and n+ 1 respectively (other arguments are uninteresting) @(xs, ys) is recursively
defined by

ifi<n
8, Yn, (Azs, ys.@(as x x,y5 % y)))) if i >n

B(5,y5) = G1(5, \i. {%(GQ()

where @5 := Ai.ifi < |xs|thenx;else0” and E is the (trivial) realizer of A —
B(xs x 0 % ... % 0)4. By some simple technical manipulations (like coding as
and ys into one sequence e.t.c.) this can be primitive recursively reduced to the
following higher type recursion scheme

_ o if i < |as]
MBR ¥(z5) = Y (Xi. {H(ms, NeW(as z)) if i > |as|)
where s varies over finite sequences of some type p and the equation is of some
type v that doesn’t contain function types (in the example of Higman’s Lemma
v is the type of pairs of integers). In [BO04] the functional ¥ is called modified
bar recursion and it is shown that Spector’s bar recursion [Spe62], which is the
scheme

G(xs) if Y(
H(as, \e.¥(xsxx)) ifY(

) < s

s
as) > |as|

SBR U(as) = {
can be primitive recursively defined from MBR, but not vice versa. Berardi,
Bezem and Coquand [BBC98] proved the correctness of the above sketched com-
putational interpretation of DC using a special realizability interpretation based
on infinite terms. Oliva and the first author [BO04] showed that Kreisel’s mod-
ified realizability [Kre59] together with Plotkin’s adequacy theorem [Plo77] can
be used instead (thus avoiding infinite terms, the role of which is taken over by
the Scott/Ershov model of partial continuous functionals).

In our case study we worked with a realizer of DC* which is defined from
MBR [Sei03]. It would be even more direct (and probably technically simpler)
to work with the realizer of the minimal bad sequence sequence argument in
the form of an open induction principle [Coq97,Ber04] instead of reducing open
induction to (classical) dependent choice.

Proof-theoretic and computational optimizations As explained above the
A-translation replaces every atomic formula C' by (C — A) — A where A is
an existential formula. This has the effect that higher types and many case
distinctions come up in the extracted program which may lead to complex and
inefficient code. In [BBS02] a refined A-translation is introduced that minimizes
double negations and hence reduce these negative effects. These refinements are
implemented in Minlog and we have tested them in our case study.

Another improvement is specific to Minlog’s implementation of normalization
by evaluation [BES98]. We introduced the functional ¥ in Minlog as a program
constant together with a rewrite rule corresponding to MBR.. Normalization by
evaluation means that in order to normalize a term, it is evaluated as a functional
(Scheme) program where MBR is interpreted as a recursive higher type proce-
dure that is defined according to the rewrite rule for MBR. This normalization
procedure is rather fast, however, when running (i.e. normalizing) programs con-
taining MBR one observes a certain inefficiency which can be explained by the
fact that if (in MBR) Y calls its argument at different values > |as| the expres-
sion H (xs, Az.¥(as * x)) (which does not depend on k) is evaluated repeatedly.
An obvious method to avoid this inefficiency is to equip the argument of Y with
an internal memory that stores the value of the expression H (s, Ax.W(xs * x))
after it has been computed for the first time. We have done this and gained a
considerable speed-up.

4 Conclusion

In this paper we discussed two methods of constructivizing classical proofs. We
applied them to the classical Nash-Williams proof of Higman’s Lemma and ex-
tracted two different programs. Both methods and the case study are imple-
mented in Minlog (www.minlog-system.de). The main computational principle
used in the extracted programs is recursion on wellfounded trees. However, while
in the program extracted from the inductive proof the trees are inductively gen-
erated as the elements of an inductive data-type, in the program obtained from
the A-translated Nash-Williams’ proof wellfounded trees are given by continuous
functionals of type two. Although both forms of wellfounded recursion are known
to be of different strength in general ([Spe62], [Tro73], Appendix by J. Zucker),
it is possible that the particular instances used here are in some way equivalent.
It was our hope that by analyzing the extracted programs such an equivalence
could be revealed. Unfortunately, the program corresponding to the second ver-
sion is still too complex to permit such an analysis, although it is considerably
shorter than the program extracted by Murthy [Mur90]. It also remains unclear
how our programs are related to those extracted by Murthy [Mur90] and Herbe-
lin [Her94]. Since Higman’s Lemma is provable in a system which is conservative
over first-order arithmetic, we know that wellfounded recursion is not needed at
all, but Godel primitive recursion (of type N — N if the alphabet A is finite)
would suffice. Such a program could be extracted in principle from an imple-

mentation of e.g. the proof by Schiitte and Simpson [SS85], but nobody has so
far undertaken such an implementation.

The inductive approach presented in this paper may be carried out in any
theorem prover supporting program extraction from inductive definitions (see,
for instance, [Berg04] for an implementation of Higman’s Lemma in Isabelle and
[Fri97] for a formalization of a different proof in Alf). The second approach is
more specific to the Minlog system, since it requires an implementation of the
refined A-translation which does not seem to be available in other systems. In
particular, the optimizations via memoization directly rely on Minlog’s normal-
ization procedure.

The program extraction from Nash-Williams’ classical proof via A-translation
described in section 3 could be extended in a straightforward way to a corre-
sponding classical proof of Kruskal’s Theorem, even in its strong form with gap
condition [Sim85]. The latter would be interesting because then we could extract
a program from a theorem for which no constructive proof is known so far. On
the other hand, the inductive method of section 2 seems to be much harder to
generalize, since, unlike the A-translated proof, the inductive proof is not ob-
tained by a mechanical translation process, but rather by picking up the essential
ideas and transforming them into a constructive argument. At present, it is an
open problem to find a corresponding inductive proof for Kruskal’s theorem.

Another interesting problem is whether strong normalization, i.e. termina-
tion of every reduction sequence, holds for suitable variants of MBR or SBR
(the versions given above are obviously not strongly normalizing since the ‘else’
branch of the case analysis can always be rewritten). For example, MBR could
be reformulated by replacing the conditional expression in the right hand side
of its defining equation by a call of an auxiliary constant ¥’ with an extra
(boolean) argument in order to force evaluation of the test k < |s| before the
subterm Pygh(s * x) may be further reduced.

U(xs) =Y (MW (i, 28,4 < |ws]))
V' (iyas,T) = a;
W' (i,as,F) = H (s, \v.W (x5 % x))

Proving strong normalization for recursion schemes of this kind is the subject of
ongoing research.

References

[BBST98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber.
Proof theory at work: Program development in the Minlog system. In
W. Bibel and P. H. Schmitt, editors, Automated Deduction — A Basis for
Applications II, 41-71. Kluwer, Dordrecht, 1998.

[BBC98] S. Berardi, M. Bezem, and T. Coquand. On the computational content of
the axiom of choice. The Journal of Symbolic Logic, 63(2):600-622, 1998.

[Ber04] U. Berger. A Computational Interpretation of Open Induction. Proc 19th
IEEE Symp. Logic in Computer Science, 2004.

[BOO4]
[BBS02]

[BSS01]

[BESOS]

[Berg04]

[CTB94]

[CMO1]

[Coq91]
[Coq97]
[CF94]
[Ers77]
[Fri97]
[Fri7s]
[Girs7]
[God58)]
[Her94]
[Hig52]
[Hyl82]
[dJPT77]

[Kre59]

[LucT73]

[Mar96]

U. Berger and P. Oliva. Modified Barrecursion and Classical Dependent
Choice. To appear in Lecture Notes in Logic, Springer, 200x.

U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extraction
from classical proofs. Annals of Pure and Applied Logic, 114:3-25, 2002.

U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall Algorithm
and Dickson’s Lemma: T'wo Examples of Realistic Program Extraction. Jour-
nal of Automated Reasoning, 26:205—221, 2001.

U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation.
In B. Moller and J.V. Tucker, editors, Prospects for Hardware Foundations,
Lecture Notes in Computer Science 1546, 117-137. Springer, 1998.

S. Berghofer. A constructive proof of Higman’s Lemma in Isabelle. In S.
Berardi and M. Coppo, editors, em Types for Proofs and Programs (TYPES
2003), Lecture Notes in Computer Science 3085, Springer, 2004.

E. A. Cichon and E. Tahhan Bittar. Ordinal recursive bounds for Higman’s
theorem. Theoretical Computer Science, 201:63-84, 1994.

R. Constable and C. Murthy. Finding computational content in classical
proofs. In G. Huet and G. Plotkin, editors, Logical Frameworks, 341-362,
Cambridge University Press, 1991.

T. Coquand. Constructive Toplogy and Combinators. In Constructivity in
Computer Science, Lecture Notes in Computer Science 613, 159-164, 1991.
T. Coquand. A Note on the Open Induction Principle. Chalmers University,
1997.

T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural
induction, 1994. ftp://ftp.cs.chalmers.se/pub/users/coquand /openl.ps.Z.
Y. Ershov. Model C of partial continuous functionals. In R. Gandy and
M. Hyland, editors, Logic Colloquium 1976, 455-467, North Holland, 1977.
D. Fridlender. Higman’s Lemma in Type Theory. PhD thesis, Chalmers
University of Technology and University of Goteburg, 1997.

H. Friedman. Classically and intuitionistically provably recursive functions.
In D. Scott, G. Miiller, editors, Higher Set Theory, Lecture Notes in Math-
ematrics 669, 21-28, Springer, 1978.

J.-Y. Girard. Proof theory and complezity. Bibliopolis, Naples, 1987.

K. Godel. Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunkts. Dialectica, 12:280-287, 1958.

H. Herbelin. A program from an A-translated impredicative proof of Hig-
man’s Lemma. http://coq.inria.fr/contribs/higman.html, 1994.

G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the
London Mathematical Society (3), 2(7):326-336, 1952.

M. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen, editors,
The L.E.J. Brouwer Centenary Symposium, 165-216. North Holland, 1982.
D. de Jongh and R. Parikh. Well partial orderings and their order types.
Indagationes Mathematicae, 39:195-207, 1977.

G. Kreisel. Interpretation of analysis by means of constructive functionals
of finite types. A. Heyting, Constructivity in Mathematics, 101-128. North—
Holland, 1959.

H. Luckhardt. Extensional Godel functional interpretation — a consistency
proof of classical analysis. Lecture Notes in Mathematics, 306, Springer,
1973.

A. Marcone. On the logical strength of Nash-Williams’ theorem on transfinite
sequences. In W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, editors,

[Mur90]

[MR90]

[NW63]
[PW93]
[Plo77]
[RS93]
[Sch79]

[Sei01]

[Sei03]

[SS85]

[Sco70]

[Sim85]

[Sim8s]

[Spe62]

[Tro73]
[Tou02]

[Vel04]

Logic: from Foundations to Applications; Furopean logic colloguium, 327—
351, 1996.

C. R. Murthy. Eztracting Constructive Content from Classical Proofs. PhD
thesis, Ithaca, New York, 1990.

C. R. Murthy and J. R. Russell. A Constructive proof of Higman’s Lemma.
In Proceedings of the Fifth Symposium on Logic in Computer Science, 257
267, 1990.

C. St. J. A. Nash-Williams. On well-quasi—ordering finite trees. Proc. Cam-
bridge Phil. Soc., 59:833-835, 1963.

C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system
Coq. Journal of Symbolic Computation, 15:607-640, 1993.

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 4:223-255, 1977.

F. Richman and G. Stolzenberg. Well Quasi—Ordered sets. Advances in
Mathematics, 97:145-153, 1993.

D. Schmidt. Well-orderings and their maximal order types, 1979. Habilita-
tionsschrift, Mathematisches Institut der Universitdt Heidelberg.

M. Seisenberger. An Inductive Version of Nash-Williams’ Minimal-Bad-
Sequence Argument for Higman’s Lemma. In P. Callaghan, e.al., Types for
Proofs and Programs, Lecture Notes in Computer Science 2277, Springer,
2001.

M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Uni-
versity of Munich, 2003.

K. Schiitte and S. G. Simpson. Ein in der reinen Zahlentheorie unbeweisbarer
Satz tiber endliche Folgen von natiirlichen Zahlen. Archiv fiir Mathematische
Logik und Grundlagenforschung, 25:75-89, 1985.

D. S. Scott. Outline of a mathematical theory of computation. 4th Annual
Princeton Conference on Information Sciences and Systems, 169—-176, 1970.
S. G. Simpson. Nonprovability of certain combinatorial properties of finite
trees. In L.A. Harrington, e.al., Harvey Friedman’s Research on the Founda-
tions of Mathematics, 87-117, North—Holland, 1985.

S. G. Simpson. Ordinal numbers and the Hilbert Basis Theorem. J. Symbolic
Logic 53, 961-974, 1988.

C. Spector. Provably recursive functionals of analysis: a consistency proof of
analysis by an extension of principles in current intuitionistic mathmatics.
In F. D. E. Dekker, Recursive function theory, 1-27, North-Holland, 1962.
A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, Lecture Notes in Mathematics 344, Springer, 1973.

H. Touzet. A characterisation of multiply recursive functions with Higman’s
lemma. Information and Computation, 178:534-544, 2002.

W. Veldman. An intuitionistic proof of Kruskal’s theorem. Archive for
Mathematical Logic, 43:215-264, 2004.

