Computability on topological spaces via domain
representations

Viggo Stoltenberg-Hansen
Department of Mathematics, Uppsala University, Box 480,
S-75106 Uppsala, Sweden

John V.Tucker
Department of Computer Science, University of Wales Swansea, Singleton Park,
Swansea, SA2 8PP, Wales

Abstract

Domains are ordered structures designed to model computation
with approximations. We give an introduction to the theory of com-
putability for topological spaces based upon representing topological
spaces and algebras using domains. Among the topics covered are:
different approaches to computability on topological spaces; orderings,
approximations and domains; making domain representations; effective
domains; classifying representations; type two effectivity and domains;
special representations for inverse limits, regular spaces and metric
spaces. Lastly, we sketch a variety of applications of the theory in
algebra, calculus, graphics and hardware.

1 Introduction

The theory of topological spaces and continuous functions is about the ap-
proximation of data and the functions that preserve those approximations.
Approximation is expressed by open subsets of the set of data. The primary
intuitions are geometric and its original applications were in geometry, dif-
ferential equations and functional analysis, where data are made from real
and complex numbers, functions and operators. A century of research has
made topology essential to mathematics and physical science (see Aull and
Lowen [2, 3], James [41]). The question arises:

How does one compute with data such as real and complex num-
bers, functions and operators? More generally, how does one
compute with data from a topological space?

Understanding computation on topological spaces is important. For ex-
ample, it is needed to improve practical computation with continuous data;



to compare and unify digital and analogue computation; to explore com-
putation in analysis and geometry; and to establish the computational and
logical nature of physical systems - to name just four research problems of
contemporary interest.

There are several answers to the computability question above, some
methods are specific to the real numbers, some are general for a class of
topological spaces. Here we will explain one answer:

Represent topological spaces of data by domains and reduce com-
putation on those spaces to computation on domains.

We will summarise other approaches to computability shortly (Section
2).

The theory of domains and order-preserving functions is also about the
approximation of data and the functions that preserve approximations. Ap-
proximation is expressed by an ordering on the set of data. The primary
intuitions are computational and its primary applications are in computabil-
ity theory and the semantics of programming languages and logics, where
computations are defined using recursion equations on functions, memory
states and environments, data, processes, formulae and types. The founda-
tions of the subject were laid by D. S. Scott [62, 63, 64] and Yu. L. Ershov
[33, 34].

Domains are ordered algebraic structures containing both approxima-
tions and the data they approximate. The ordering C on a domain D
formulates the idea that for a,b € D,

a C b <= ‘datum b is a better approximation than datum a’.

The limits of sequences of such approximations are the data to be approxi-
mated. Computations are modelled as a process of finding better and better
approximations.

Domains are designed to solve equations. Their orderings are used to
capture some of the features of using iterative algorithms to approximate
solutions. The equations are formulated as fixed point equations, i.e., for a
given function f: D — D, find a in D such that f(a) = a. The fixed point
methods build the solutions from their approximations. The inspiration of
these essential features of domains and equation solving are the complete
partially ordered set (cpo) and the equation solving methods of the Tarski-
Knaster Fized Point Theorem, proved in 1927; (see, e.g., Tarski [79]). These
methods found their way into computability theory via theorems such as
Kleene’s recursion theorems. The methods were applied on particular cpos
of functions on natural numbers to explain recursion. Through the theory
of domains and domain representations the wide applicability of fixed point
methods to computational problems became evident.

The theory of domain representations of topological spaces is a general
theory about how to:



(i
(i

) represent topological spaces using domains;
)

(iii) compare and classify different domain representations;
)
)

analyse computation on spaces via their representations;

(iv) compute the solutions of equations on spaces; and

(v

In this chapter we will introduce these topics, sketch their development,
and point out connections with other theories that answer the question posed
above. Many kinds of domains have been discovered; we will focus on so
called algebraic domains which we consider to be the most simple and useful

make applications.

for computability.

The structure of the chapter is this. In Section 2 we will summarise
the approaches to computability and sketch their origins. In Section 3 we
introduce the idea of using orderings to formulate basic ideas about approx-
imations. This leads directly to the concept of an algebraic domain. In
Section 4 we introduce the continuous functions on domains. In Section 5
we define domain representations for spaces which are the structures within
which computations take place. In Section 6 we add algorithms and de-
fine what is actually computable on the approximations that make up the
domain. In Section 7 we introduce some simple types of domain represen-
tations (retract, dense, etc.), and we use reductions between domains that
allow us to compare representations of topological spaces and discuss the
stablility or invariance of computational properties of the representations.
In Section 8 we examine a special form of algebraic domain representation
which we derive from K. Weihrauch’s approach to computability on spaces
called Type 2 Theory of Effectivity (TTE): see Weihrauch [86]. In Section 9
we look at some standard constructions of domain representations, includ-
ing metric spaces. In Section 10 we sketch some applications of the theory
to studies of computation on different spaces, including real numbers, local
rings, Banach spaces, process algebras, distributions, etc.

We thank Jens Blanck and Fredrik Dahlgren for useful comments on this
article.

2 Computability on topological spaces: some prin-
ciples, approaches and history

To compute in a topological space we will choose some representation of the
space, made from a domain, and compute on the domain representation.
There are other ways to compute on spaces, not all of which are equivalent,
and so before examining domain representations we will view the wider
technical landscape.



2.1 Principles: Concrete versus abstract computability

By a computability theory we mean a theory of functions and sets that are
definable using a model of computation. By a model of computation we mean
some general method of calculating the value of a function or of deciding,
or enumerating, the elements of a set. The functions and sets can be made
from any kind of data.

With this terminology, Classical Computability Theory on the set N
of natural numbers is made up of many computability theories, derived
from different ideas about algorithms. The fact that different computability
theories lead to equivalent theories of functions and sets on N gives the
classical theory on N its unity, which was epitomised by the Church-Turing
Thesis and was an early discovery.

Starting in the 1940s, computability theories have been created for other
sets of data, including higher types over the natural numbers, real numbers
and spaces of real-valued functions. More generally, computability theories
have been created for classes of structures, such as groups, rings, fields, and
topological and metric spaces. However, the classification and the proofs of
equivalences of models of computation - and, hence, the search for gener-
alised Church Turing Theses and the theoretical unity they represent - have
proved much more difficult to achieve for these data types. An early exam-
ple of different models of computation that are of equal conceptual value
but are known not to be equivalent is provided by Tait’s Theorem in higher
types: the fan functional on total functions is recursively continuous but not
computable in Kleene’s schemes S1-S9; see Normann [53].

Some general insight into the phenomenon of inequivalent computabil-
ity theories is to be found by examining treatment of data in models of
computation. Computability theories can be classified into two types by
introducing the following concepts.

Definition 2.1. In an abstract computability theory the computations are
independent of all the representations of the data. Computations are uni-
form over all representations and are isomorphism invariants.

In a concrete computability theory the computations are dependent on
some representation of the data. Computations are not uniform, and dif-
ferent representations can yield different results. Computations are not iso-
morphism invariants.

Models of computation that are based on abstract ideas of program,
equation, scheme, or logical formula are typical of abstract models. Models
of computation that are based on concrete ideas of coding, numbering, or
representing data using any other kind of data, are typical of concrete mod-
els. Now, the distinction of abstract versus concrete is helpful in comparing
models of computation. There is a need for both abstract and concrete
models and an understanding of their relationship.



Clearly, within the concrete, there is great scope for variations in models
of computation and we may expect different representations to lead to differ-
ent computability theories. Abstract models, too, can vary, since the choice
of operations, program constructs and kinds of formulae can vary. Can
there be concrete models that are sufficiently canonical to be equivalent to
an abstract model?

A full general discussion of the distinction is given in Tucker and Zucker
[83], motivated by their theory of abstract computation on topological spaces
(see Tucker and Zucker [80, 81, 82]). The distinction is also directly rele-
vant to the seemingly stable and unified classical world of computability on
countable algebras, as pointed out in Tucker and Zucker [83]).

The theory of computable sets and functions is based on data that may
be represented by finite discrete symbols. For Turing’s analysis of human
computation the symbols came from the set B = {0, 1} or for Kleene’s theory
of recursive functions the symbols were from N. For Goédel’s computations
on syntax the symbols came from the set N of natural numbers via Goédel
numberings. The early development of computability theory did not interest
itself in ideas about data and how it was represented. What, after all, was
worth saying about B and N other than they are so fundamental and an
obvious place to start. In the 1950s computability theory was extended by
advanced applications in logic, algebra and analysis. Studying computabil-
ity now required an interest in nature of data and how it was represented
because what was computable depended upon the data. In algebra, rings
and fields had to be considered as structures unique up to isomorphism, not
just as specific representations. In Frohlich and Shepherdson [38] we see
great attention to representations and their equivalence. In the Mal'cev-
Ershov theory of numberings of countable sets and structures [49, 35, 36],
representations are studied in depth: a numbering a: N — A makes explicit
the idea that one chooses a numerical representation of the data in A and
computes on N. The theory of numberings plays a role in the development
of domain representations.

2.2 Computability theories for topological spaces

Most computability theories for topological spaces are developed using con-
crete models of computation. The study of computability on the reals began
with Turing in 1936, but only later was taken up in a systematic way, e.g., in
Rice [59], Lacombe [47] and Grzegorczyk [39]. For example, to compute on
the set R of real numbers with a concrete model of computation we choose
an appropriate concrete representation of the set R, such as computable
Cauchy sequences.

In the case of concrete computability, there have been a number of gen-
eral approaches to the analysis and classification of metric and topological
structures since the 1950s:



(i) Effective metric spaces (Ceitin [18], Moschovakis [52]);

(ii) Computable sequence structures for Banach spaces (Pour El and
Richards [58]);

(iii) Type 2 Theory of Effectivity or TTE (Weihrauch [85, 86]);

(iv) Algebraic domain representations (Stoltenberg-Hansen and Tucker |71,
72, 75]);

(v) Continuous domain representations (Edalat [24, 25, 26]);

(vi) Numbered spaces (Spreen [66, 67, 68, 69]).

Computable Analysis has been greatly extended over the past decade
using these models, which have been seen as competing. This has made the
exciting rapid growth of the subject seem messy. In fact, for certain basic
topological algebras, most of these concrete computability theories have been
shown to be essentially equivalent in Stoltenberg-Hansen and Tucker [77].

We ought to say a word about the abstract approach. Analysis makes
heavy use of algebraic structures, such as topological groups and vector
spaces, Banach spaces, Hilbert spaces, C* algebras and many more. These
many sorted topological algebras specify (i) some basic continuous opera-
tions; (ii) normal forms for the algebraic representation of elements (e.g.,
using bases); (iii) structure-preserving operators (i.e., homomorphisms such
as linear operators); (iv) approximations, through inner products, norms,
metrics and topologies.

Abstract computability theories are created by simply applying the ab-
stract models to these algebras. These can be defined by programming
languages whose programs are based on the operations of the algebras. How-
ever, thanks to approximation (iv), we obtain two classes of functions: the
computable functions and the computably approximable functions.

A full account of the theory on general metric algebras, together with
a detailed discussion of the bridge between abstract and concrete models,
can be found in Tucker and Zucker [82, 83]. The most publicised abstract
computability theory for R is that developed in Blum, Cucker, Shub, and
Smale [17], but it is a theory that does not fit the concrete models because
of its use of non-effective operations such as =.

2.3 Domain representation theory

The idea of representing topological spaces and algebras using effective do-
mains was, as far as we know, first made explicit in a widely circulated
report Stoltenberg-Hansen and Tucker [71], later published as [72]. There a
general methodology was described for topological algebras and applied to
study the effective content of the completion of a computable Noetherian



local ring. It was further extended to ultrametric spaces and locally compact
regular spaces in [73, 74, 75] and to metric spaces in the thesis [8]. We will
meet these constructions in Section 9.

A precursor to some of the central ideas of domain representability is
Weihrauch and Schreiber [87], where embeddings of metric spaces into com-
plete partial orders equipped with weight and distance are considered.

It was clear from the beginning of the development of domain theory
that, in addition to the ease of building type structures, it is a theory of
approximation and computation, and that computability often implies con-
tinuity. This was exploited in [34] where Ershov gave a domain representa-
tion of the Kleene-Kreisel continuous functionals. An effective and adequate
domain model of Martin-Lof partial type theory is given in Palmgren and
Stoltenberg-Hansen [57] which has been extended in Waagbg [84] to provide
a domain representation of Martin-Lof total type theory (see also Berger [6]
and Normann [54]).

3 Approximations, orderings and domains

Suppose we want to compute on a possibly uncountable structure such as
the field of real numbers R. The elements of R are in general truly infi-
nite objects (Cauchy sequences or Dedekind cuts) with no finite description.
However, computations that can be performed by a digital computer or Tur-
ing machine must operate on ‘finite’ objects. By a finite object we mean
that it is finitely describable or, equivalently, coded by a natural number. In
particular, the structure on which computations are to be performed must
be countable. Therefore it is not possible to compute directly on R, we can
at best compute on finite approximations of elements in R. If the approx-
imations are such that each real number is the limit of its approximations
then we can extend a computation on approximations to R by interpret-
ing a computation on a real number as the ‘limit’ of the computations on
its approximations, where such a limit exists. It follows, intuitively, that
computations are continuous processes.

In this section we show that a simple analysis of the notion of approxi-
mation leads naturally to the class of algebraic cpos.

3.1 Approximations and orderings

Let us consider the problem of approximation abstractly. Suppose that X is
a set, or more generally, a structure. To say that a set P is an approximation
for X should mean that elements of P are approximations for elements of
X. That is, there is a relation <, the approrimation relation, from P to X
with the intended meaning for p € P and x € X,

p < x <= “p approximates x”.



We illustrate this with a few relevant examples.

Example 3.1. Let P = {[a,b]:a < b,a,b € Q} and X = R. Define
[a,b] < x <=z € [a,b].

Note that P is countable and consists of finite elements in the sense that an
interval [a,b] is finitely describable from finite descriptions of the rational
numbers a and b and the symbols “[”, “]” and “,”. Furthermore, each = € R
is the ‘limit’ (intersection) of its approximations.

Example 3.2. Let P =Q and X = R. For a € Q and z € R define
a<r<—a<cx

where < is the usual order on R.

Note that Example 3.1 provides a better approximation of R than Ex-
ample 3.2 in that [a,b] < x gives more information than a < x.

Example 3.3. Let X be a topological space with a topological base B. For
B € B and z € X define

B<x<+= x€B.

Let P and X be sets and let < be a relation from P to X. Then <
induces in a natural way a relation T on P, the refinement (pre-)order
obtained from or induced by <: for p,q € P let

pCg<= VzeX)(g<x=p=<2x).

Thus p C q expresses that q is a better approximation than p, or q refines
p, in the sense that ¢ approximates fewer elements in X than does p. Note
that the induced refinement order indeed is a preorder, i.e., it is reflexive
and transitive.

We now put some reasonable requirements on P and < in order to obtain
an approzimation structure for X. We require that

e cach element x € X is uniquely determined by its approximations, and
e each element z € X is the ‘limit’ of its approximations.

In addition, for domain theoretic reasons guaranteeing the existence of fixed
points, it is useful to require P to have a trivial approximation, i.e., an
approximation which approximates all elements of X (and hence contains
no information about elements of X'). This leads us to

Definition 3.4. Let P and X be sets, < a relation from P to X and C
the refinement preorder obtained from <. Then (P,C) is an approzimation
structure for X with respect to < if



(i) {pePp<z}={pePp<y} = x=y (uniqueness);
(ii) p<zrand g <z = (Ir < x)(p C r and q C r) (refinement);
(iii) (Ip € P)(Vx € X)(p < z) (trivial approzimation).

Examples 3.1 and 3.2 are approximation structures when we add a trivial
approximation. Example 3.3 gives an approximation structure precisely
when the space X is T. In this sense (i) in Definition 3.4 is a Ty property.

3.2 Ideals and domains

Let (P,C) be an approximation structure for X with respect to <. Then
each x € X is uniquely identified with the set {p € P:p < x}. Note that if
p C g < x then p < z. Together with (ii) and (iii) in Definition 3.4 we see
that {p € P:p < x} is an ideal over (P,C). In particular, it is a (canonical)
net ‘converging’ to x.

Let us recall the definitions. For a preorder P = (P,C), aset A C P is
said to be directed if A is non-empty and if p,q € A then there isan r € A
such that p,q C r, i.e., every finite subset of A has an upper bound in A.
A subset I C P is an ideal over P if I is directed and whenever x C y and
y € I then also x € I, that is, I is downwards closed.

We often use the notation |p={q € P:qC p} and Tp={q € P:pC q}.
Note that |p is an ideal, the principal ideal generated by p. We denote by
Idl(P, ), or just IdI(P), the set of all ideals over (P, C).

Given an approximation structure (P,C) of X with respect to < we
obtain an injection of X into Idl(P), i.e., X “lives” in Idl(P). In addition,
Id1(P) contains the approximations P that we started with by means of the
principal ideals |p. Thus

Id1(P) is a structure that contains both the original space and its
approximations.

Idl(P) is naturally ordered by inclusion C. For if ideals I C J then J
contains more approximations and hence more information about the ele-
ments approximated than does I. We consider 1dl(P) as a structure ordered
by inclusion.

Definition 3.5. Let P = (P,C) be a preorder. The ideal completion of P
is the structure P = (Idl(P), C).

It is easily verified that P is an algebraic cpo where the compact elements
are precisely the principal ideals. We recall the definitions.

Let D = (D,C, 1) be a partially ordered set with least element L.
Then D is a complete partial order (abbreviated cpo) if whenever A C D is
directed then | | A (the least upper bound or supremum of A) exists in D.
An element a € D is said to be compact or finite if whenever A C D is a



directed set and a C | | A then there is x € A such that a C x. The set of
compact elements in D is denoted by D.. A cpo D is algebraic if for each
x € D, the set

approx(z) = {a € D¢:a C z}

is directed and x = | | approx(x).
Algebraic cpos have the following representation theorem. For its simple
proof see Stoltenberg-Hansen et al. [70].

Theorem 3.6. Let D = (D,C, 1) be an algebraic cpo and let D, be the
ideal completion of D, = (D.,C). Then D ~ D.,.

Note that if D is an algebraic cpo then (D.,C) is an approximation
structure for D with respect to <, where for a € D, and x € D,

a<1r<<al
Thus we have

Corollary 3.7. Algebraic cpos are precisely the ideal completions of approx-
imation structures.

Algebraic cpos are completely determined by their sets of compact el-
ements. Also continuous functions between algebraic cpos are completely
determined by their action on compact elements. Therefore, as we shall see
in Section 6, algebraic cpos carry a natural theory of effectivity by com-
puting on the set of compact elements, and a large subclass of them are
effectively closed under various constructions including the function space
construction.

We say that an algebraic cpo D is k-based if the cardinality of D, equals
Kk, where k is a cardinal. D is countably based if D. is countable. When
considering effective algebraic cpos we are thus restricted to countably based
algebraic cpos.

3.3 Methodology of domain representability

Assume the task is to study computability on a set or structure X. We find
a suitable set P of approximations and then form the ideal completion P of
the induced approximation structure. Then P contains both the structure
X and the set of approximations for X. Furthermore, the effectivity of P
and hence of X is completely determined by the computability of the set P
of approximations. Now we use the general theory of domains to study the
structure X, including

e fixed point theorems to compute solutions to equations;

e case in building higher type objects (e.g. streams and stream trans-
formers, see [15], and higher type operations such as integrals and
distributions);

10



e computability, inherited from the computability of P.

Our claim is that the use of domains (of various kinds) provides a general,
uniform and useful way to study computability via approximations on a large
class of structures.

4 Continuous functions and algebraic domains

Since computations are based on approximations, an approximation of the
value of a computable function should depend only on an approximation of
its argument. This property gives rise to a notion of continuity.

Let D and E be cpos. Then f: D — FE is continuous if f is monotone
and for each directed set A C D, f(||A) = || f[4]. Thus f is continuous
if it preserves information and, regarding | | A as the limit of the ‘net’A,
preserves limits. In case D and E are algebraic then f is continuous if, and
only if, f is monotone and for each x € D,

(Vb € approx(f(x)))(3a € approx(x))(b € f(a)).

This says that for each concrete approximation b of f(x) there is a concrete
approximation a of x such that f applied to a ‘computes’ at least as much
information as b.

The topology corresponding to this notion of continuity is the Scott topol-
ogy. For an algebraic cpo it is generated by the topological base {Ta : a €
D.}.

For cpos D and E we define the function space [D — E] of D and E by

[D — E|={f:D — E| f is continuous},
and give [D — E] the pointwise ordering:
fE g+ (Vo e D)(f(z) E g(x)).

It is easy to see that [D — E] is a cpo where for a directed set 7 C [D — E]
and x € D,

P @) = [{f@):feF}

It is well-known that the class of algebraic cpos is not closed under the
function space construction. The usual additional requirement (though not
the finest) is to assume consistent completeness. An algebraic cpo D is said
to be consistently complete if each consistent (i.e. bounded) pair a and b
of compact elements has a supremum (denoted a LI b). It follows that | | A
exists for each consistent set A C D.

Definition 4.1. An algebraic domain is a consistently complete algebraic
cpo.

11



Proposition 4.2. The class of algebraic domains is closed under the func-
tion space construction.

Let D and E be algebraic domains. Then the compact elements of
[D — E] are suprema of finite consistent sets of step functions (a;b), where
the latter are defined as follows for a € D. and b € E.,

b ifaCx
(a;b)(z) = { 1 otherwise.

The class of algebraic domains is quite robust in that it is closed un-
der all the usual constructions with the exception of the Plotkin power
domain construction. The category of algebraic domains along with con-
tinuous functions is cartesian closed. In addition the fixed point operator
fix:[D — D] — D, defined by fix(f) = least x such that f(z) = z, is con-
tinuous.

5 Domain representations

Here we define the concept of a domain representation. We begin by consid-
ering the canonical example of the reals and conclude with some comments
on using different kinds of domains.

5.1 Representing the reals

Recall Example 3.1 of the interval approximation structure for the reals
R. The set of approximations P consists of all finite closed intervals with
rational end points. We also add R to P and say R < r for each r € R.
The induced refinement order is [a,b] C [¢,d] <= [a,b] D [¢,d]. Let r € R.
Then, as discussed in Section 3, the ideal

I"={[a,b) € P:a <r <b}U{R}

represents r. Note that I” has the property that ()" = {r}. Now consider
the ideal
I, ={[a,b] e P:a<r <b}U{R}.

Also in this case (I, = {r} but I" # I, in case r is a rational number.
Both ideals give complete information about r and can be considered to
represent r. We say that an ideal I € P represents a real number r just in
case (I = {r}. Let P be the set of ideals whose intersection is a singleton
and define a function v : P — R by

v(l) :r@ﬂlz{r}.

Proposition 5.1. The function v: PE — R is a continuous surjection with
respect to the Scott and Euclidean topologies.

12



We have the following picture.
P— P— PRLR,

Thus, computability on R can be induced via the continuous function
v from computability considerations on P, which in turn depends on com-
putations on P. The tuple (P, P® 1) is a canonical example of a domain
representation of R. Tt is upwards closed in the sense that if I € P and
I C J € P then J € P®. Furthermore v(I) = v(J) for such I and .J. Note
that if we instead choose P to consist of open intervals then P consisting
of the ideals whose intersection is a singleton will not be upwards closed.

5.2 General definitions

We now generalise to an arbitrary topological space.

Definition 5.2. Let X be a topological space, let D be a domain and
DT a subset of D. Then (D, D%, v) is a domain representation of X in case
v: D — X is a surjective continuous map when D? is given the (relativised)
Scott topology.

We have on purpose used the generic term ‘domain’ since the definition
makes sense for any type of ordered structure or, for that matter, topologi-
cal space. Commonly used ordered structures are algebraic cpos, algebraic
domains, continuous domains and bifinite domains. We return to this point
below and in Section 10.

Suppose we have a domain representation of a set X, where we thus
only require v to be a surjection. Then the domain representation induces a
topology on X by giving X the quotient topology. That is, U C X is open
<= v~ 1[U] is open in D¥. This may at times be a useful way to topologise
function spaces and thus build type structures of topological spaces.

It is quite common when constructing domain representations that the
obtained mapping v is a quotient mapping. For example, this is the case for
the representation of R given above. Thus R is a quotient of P®, that is

R~ PR/ ~,

where I ~ Jif I =J.
The next step is to represent functions between and operations on topo-
logical spaces.

Definition 5.3. Let (D, D v) and (E, E¥, 1) be domain representations
of X and Y respectively. A function f: X — Y is represented by (or lifts
to) a continuous function f: D — E if f[D] C Ef and u(f(z)) = f(v(2)),
for all x € D,

13



Note that f is required to be defined on all of D. In certain situations
when considering computability aspects it may be useful to allow partial
functions on D. This is developed in Dahlgren [20].

Suppose f:D — E is such that f[D®] C EF and such that v(z) =
v(y) = p(f(x)) = u(f(y)). Then f induces a unique function f: X — Y

defined by f(v(x)) = u(f(x)).

Proposition 5.4. Let (D, D v) and (E, E®, 1) be domain representations
of X and Y respectively, and assume v is a quotient map. If f: X — Y is
represented by a continuous function f: D — E then f is continuous.

The proposition is a trivial topological fact. The converse is more in-
teresting. When does a continuous function f: X — Y have a continuous
lifting f: D — E? We will return to this kind of questions in Section 7.

Domain representability is naturally extended to topological algebras.
Recall that a topological ¥-algebra is a topological space with continuous
operations specified by the signature ¥. The field R = (R, +, x,0, 1) of real
numbers is a relevant example here.

Definition 5.5. Let A = (A,01,...,0,) be a topological ¥-algebra. Then
A'is domain representable by D = (D, D% v;51,...,5,) when (D, DE, v) is
a domain representation of the topological space A, and each &;: D™ — D
is a continuous operation on D representing the operation ;. The domain
with operations (D, a1, ...,0,) is called a X-domain.

Note that the mapping v in the definition is a ¥-homomorphism.

5.3 Other domains

One can represent topological spaces using other kinds of domains and or-
dered structures. Examples are Baire-Cantor domains and continuous do-
mains. Each yields a theory of computability on spaces with an extensive
set of applications.

The Cantor-Weihrauch domains are simply the Baire and Cantor spaces
of functions on N seen as domains; we will meet them in Section 8. K.
Weihrauch created the theory of TTE computability independently of no-
tions of domain theory. Indeed after having considered cpos as a general
approximating structure, he chose to use Baire and Cantor spaces and their
computability theories based on relativised Turing computability, to repre-
sent spaces. TTE has an extensive theory and a huge range of applications,
see Weihrauch [86]. It is possible to view TTE as a theory of Baire-Cantor-
Weihrauch domain representations: see Blanck [14].

The continuous domains have a different axiomatisation of the intuitions
behind domains and form a larger class of structures containing the algebraic
domains. They were first used for the representation of the real numbers
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and other topological spaces by A. Edalat, who has also created an extensive
set of applications: see Section 10.9.

The relationship between the use of these various kinds of domains in
representation theory has been discussed in Stoltenberg-Hansen and Tucker
[77] and in Blanck [14].

6 Effectivity

In this section we impose and study notions of computability or effectivity
on domains in order to study computability on the represented structure.
The type of effectivity we consider is, in the terminology of Definition 2.1,
concrete computability. Our computability theory is driven by the partial
recursive functions. We use the Mal’cev-Ershov theory of numberings in
order to extend computability from the natural numbers to other structures,
such as domains.

We assume some very basic knowledge of recursion theory, that can be
found in any basic text. Our notation is standard. In particular we let
{We}een be a standard numbering of the recursively enumerable (r.e.) sets.

Let A be a set. A numbering of A is a surjective function a: Q4 — A,
where Q4 C N. It should be thought of as a coding of A by natural numbers.
In case 24 is recursive, we say that a subset S C A is a-semidecidable if
a~1(9) is r.e. and S is a-decidable if a~1(S) is recursive.

Let B be a set with a numbering 5. Then a function f: A — B is said
to be (a, B3)-computable if there is a partial recursive function f such that
for each n € Qa, f(n) is defined and

We say that f tracks f.

6.1 Effective domains

At the heart of an algebraic cpo are the compact elements which play the
role of the finite approximations. All computations will take place on the
compact elements. Moreover continuous functions between algebraic cpos
are completely determined by their behaviour on the compact elements.
Thus it suffices to have a numbering of the compact elements of an algebraic
cpo.

The following weak notion of effectivity suffices for many basic results
with the important exception of the function space construction.

Definition 6.1. An algebraic cpo D = (D, C, 1) is weakly effective if there
is a numbering
a:N— D,

15



of D. such that the relation a(n) C «(m) is a recursively enumerable relation
on N (i.e., the relation C is a-semidecidable).

We denote an algebraic cpo D, weakly effective under a numbering «,
by (D, ).

Computable elements of a weakly effective cpo are those that can be
effectively approximated and effective functions are those whose values can
be effectively approximated from effective approximations of the arguments.

Making this precise, given weakly effective (D, ) and (F, (3), we say that
an element x € D is a-computable if the set approx(x) is a-semidecidable.
The set of computable elements in (D, «) is denoted by Dy q.

A continuous function f: D — FE'is (a, 3)-effective if the relation b C f(a)
is a-semidecidable on D, x E.. The intuition for the latter is that the
approximations of f(z) are generated effectively and simultaneously with the
approximations of x. (Recall the characterisation of a continuous function
between algebraic cpos from Section 4.)

It is straight forward to show that an effective function takes a com-
putable element to a computable element and that the composition of effec-
tive functions is effective.

The set Dy o has a natural numbering.

Theorem 6.2. Let (D, «) be a weakly effective algebraic cpo. Then there is
a numbering a:N — Dy, , such that

(i) the inclusion mapping v: Do — Dy, o is (o, &)-computable;

(i) the relation a(n) C a&(m) is r.e., i.e., approx(a(m)) is a-semidecidable
uniformly in m; and

(iii) there is a total recursive function h such that for each e,

a[We] directed = ah(e) = |_|64[We].

A numbering satisfying (i) and (ii) of the theorem is said to be a con-
structive numbering of Dy, o. It is recursively complete if it also satisfies (iii).
It is a fact that all recursively complete constructive numberings of Dy, ,, are
recursively equivalent as numberings. In general, two numberings p and v
of a set A are recursively equivalent if id: A — A is (u, v)-computable and
(v, p)-computable.

To relate our domain theoretic notions to classical recursion theory let
‘P be the algebraic domain of all partial functions from N into N ordered
by graph inclusion. Let o be a standard numbering of the set P. of finite
functions. Then Py, , is the set of partial recursive functions. The numbering
@ is a standard numbering of the partial recursive functions in the sense of
Hartley Rogers in that it satisfies the universal property and the s-m-n
theorem.
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Given weakly effective algebraic cpos (D, «) and (E, 3) we have the no-
tion of an (a, B)-effective function from D to E and of an (&, 3)-computable
function from Dy, o to Ej 3. They are related by the following deep theorem
due to Ershov [34], a generalisation of the Myhill-Shepherdson theorem.

Theorem 6.3. Let (D, ) and (E,3) be weakly effective domains and let
[:Dgo — Egg. Then f is (&,[)-computable if, and only if, there is an
(o, B)-effective function f: D — E such that f [ Dy o = f.

For the function space construction a stronger form of effectivity is
needed.

Definition 6.4. An algebraic domain D = (D,C, 1) is effective if there is
a numbering a: N — D, such that the following relations are a-decidable for
a,b,c € Dg:

(i) a C b;
(ii) 3d € D¢(a,b C d); and
(ifi) aUb = d.

Proposition 6.5. The category of effective domains with effective functions
as morphisms is cartesian closed.

The proof uses the intuitively effective criterion for determining whether
a finite set of step functions is consistent, namely

{{a1;b1),...,{an;by)} 1is consistent in [D — E]
if, and only if,

VI C{1,...,n}({a;:i € I} consistent = {b;:i € I} consistent).

6.2 Effective domain representations

The method we pursue to study effective properties of a topological algebra
A is to find an effective domain D representing A in the sense of Definition
5.2 and then measure the effectivity of A by means of the effectivity of
the representing domain D. Thus, the effectivity of A is dependent on the
domain representation D and its effectivity. In practice, as described in
Section 3.3, given an algebra A one finds a computable or effective structure
P of approximations for A which is such that the ideal completion P of the
approximation structure P is a domain representation of A.

Definition 6.6. Let X be a topological space. Then X is (weakly) effec-
tively domain representable by (D, D®, v, a) when (D, D, v) is a domain
representation of X and (D, «) is a (weakly) effective domain.
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The computable elements of X are induced by the computable elements
of D. More precisely, the set X}, o, of computable elements of X is the set

Xpo ={z € X : v H2) N Dy # 0}.

The above notions are easily extended to topological Y-algebras. Let
(A,01,...,0,) be a topological ¥-algebra. Then (D, DF, v, a;61,...,6,) is

a (weakly) effective domain representation of (4, o1, .. ., 0,) if the operations
; are a-effective, and (D, D®,v;5,,...,5,) is a domain representation of
(A,o1,...,00).

A Y-algebra A is said to have a numbering with recursive operations if
there is a numbering 5 : Q4 — A, such that each operation in A is (-
computable. And we say that (A, 3) is a numbered algebra with recursive
operations if 5 is a numbering of A with recursive operations. Note that
we put mo requirement on the complexity of the code set {24 nor on the
(relative) complexity of the equality relation.

Proposition 6.7. Let (A,01,...,04) be a topological ¥-algebra weakly ef-
fectively domain representable by (D, D% v, a;61,...,5,).

(i) Ak is a subalgebra of A.

(i) Ak is a numbered algebra with recursive operations with a numbering
a induced by .

The first part of the proposition follows immediately since an effective
domain function takes computable elements to computable elements. For
the second part let Q4 = d‘l(Dk’a N D®) and define a: Q4 — Ap o by

a(n) = v(a(n))

for n € 14, where @ is the canonical numbering of Dy, , obtained from o as
in Theorem 6.2.

Finally we introduce two notions of effectivity for functions between
weakly effectively domain representable topological spaces.

Definition 6.8. Let A and B be topological spaces, weakly effectively do-
main representable by (D, D%, v, a) and (E, E®, u, 3), respectively.

(i) A continuous function f: A — B is said to be («, B)-effective if there
is an (a, B)-effective continuous function f : D — FE representing f,
that is f[D] C ET and for each x € DE, f(v(z)) = u(f(z)).

(i) A function f: Ay o — B gis (&, B)—computable, where & and 3 are the
numberings obtained in Proposition 6.7, if there is a partial recursive
function f such that Q4 C dom(f) and for all n € Q4,

f(@(n) = B(f(n),

that is f tracks f with respect to & and 8.
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It is not difficult to see from Theorem 6.3 that if f: A — B is («, )-
effective then f[A; o: Ako — Brg is (d,ﬁ)—computable (and continuous).
The converse direction is more difficult. It is related to the Kreisel-Lacombe-
Shoenfield theorem [43] and Ceitin’s theorem [18]. Note that continuity is

not assumed in (ii).

7 Classes of domain representations

Recall that we only required of a domain representation (D,DR,V) of a
space X that the function v: D® — X be continuous. In most cases, but
not all, we have stronger representation. Here are some common and useful
additional properties.

Definition 7.1. Let (D, D®, 1) be a domain representation of the topolog-
ical space X.

(i) The representation is a quotient representation if v is a quotient map.

(ii) The representation is a retract representation with respect to p: X —
D% if p is continuous and vp = idy.

(iii) The representation is a homeomorphic representation if v is a homeo-
morphism.

It is straight forward to see that (iii) = (ii) = (i). Recall that if we
restrict ourselves to quotient representations then representable functions
are continuous. For a retract representation (D, DT, v) with respect to p
of X we have that pv is a retract, that is, (pv)? = pv, and hence that
(D, pv[DT],v ] pv[DF]) is a homeomorphic representation of X.

Consider the standard representation of R obtained from the approx-
imations in Example 3.1. It is easy to see that this is a retract repre-
sentation with respect to the function sending each r € R to the ideal
I, = {[a,b] € P:a < r < b} U{R}. Thus we obtain a homeomorphic
representation of R. Note, however, that this representation is not upwards
closed. In fact, there is no homeomorphic domain representation (D, D, v)
of R where D® is the set of maximal elements of an algebraic domain D.
(There is, however, a homeomorphic continuous domain representation con-
sisting of the maximal elements, see Section 10.9).

Theorem 7.2. Fvery Ty topological space X has a homeomorphic algebraic
domain representation.

The construction is as follows. Let B be a topological base of non-
empty sets closed under finite intersections as in Example 3.3. Taking the
ideal completion of the approximation structure (B, 2) and letting the rep-
resenting ideals be I, = {B € B : = € B}, we obtain a homeomorphic
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representation. Thus every Ty space X has a homeomorphic x-based do-
main representation, where « is the weight of X, that is, the smallest infinite
cardinality of a topological base for X. In particular, each second count-
able Ty-space has a countably based homeomorphic domain representation.
However, it is not the case that countably based domain representations
are restricted to second countable spaces. As we shall see in Section 10.6
there are good effective and hence countably based domain representations
of important spaces that are not second countable.

The set D in a domain representation (D, D~ v) is often referred to as
the set of total elements in the sense that its elements give total information
about the elements of the represented space. There is an abstract theory of
domains with totality, i.e., pairs (D, D) where D' C D and (often) satisfies
some trivial properties. We will not pursue this theory here but we use the
concept.

We will mainly restrict ourselves to dense representations. A domain
with totality (D, D®) is dense if D is dense in D with respect to the Scott
topology. And a domain representation (D, D, v) of a space X is dense if
(D, D%) is dense.

The advantage of a dense representation (D, D, v) is the relative ease
with which a continuous function from D* can be lifted or extended to the
whole of D. It is always possible to obtain an equivalent dense represen-
tation from any given representation (D, D%, v) by considering the domain
generated by all compact approximations lying below some element of D,
This construction, however, is in general far from being effective. One way
to deal with this problem is to use partial continuous functions [20]. There
are important situations where liftings can be achieved also for non-dense
representations [14, 45, 56].

Definition 7.3. Let D = (D, D, v) and E = (E, EF, 1) be domain repre-
sentations of a topological space X. The representation D reduces (continu-
ously) to E, denoted by D < E, if there is a continuous function ¢: D — E
such that ¢[Df] C E® and (Vo € DF)(v(z) = p¢(x)), i.e., v factors through
1 via ¢ on the representing elements D¥. We say that D = E when D < F
and F < D.

Like the definition of domain representability this notion of reducibility
works with many types of ordered structures.

Let C be a class of domains with totality. We will in this connection say,
e.g., that C is the class of dense algebraic cpos, thus suppressing the ‘with
totality’. Then we let Spec.(X) denote the equivalence classes of = over the
class of domain representations (D, D¥,v) of X, where (D, D) € C. Note
that if C is the class of dense algebraic domains, then Spec(X) contains a
largest element, assuming X is a Ty-space, by considering the homeomorphic
representation obtained from a topological base.
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Theorem 7.4. (Blanck [14]) Let C be the class of dense algebraic domains
and assume X is a To-space. Then the largest degree of Specy(X) contains
precisely the retract representations of X over C.

In particular we know that the standard representation of R is a largest
representation over dense algebraic domains and also equivalent to the stan-
dard homeomorphic representation of R. In fact, Blanck shows that if
(D, D® v) is a retract algebraic domain representation of X then (D, D, v)
is a largest representation over the class C of dense algebraic cpos. This then
applies to the standard representation of R.

Another related but important concept is that of an admissible domain
representation. The analogous notion for TTE was first formulated by
Schroder [61], whereas Weihrauch considered a similar notion for second
countable spaces.

Definition 7.5. Let D = (D, DR, v) be a domain representation of a topo-
logical space X. Then D is an admissible representation of X over a class C
of domains with totality if whenever (E, E) € C and ¢: Eff — X is contin-
uous then there is a continuous function ¢: E — D such that ¢[E¥] C D
and for each w € EF, ¢(w) = vo(w).

Again the term ‘domain’ is generic. We will, as usual, restrict ourselves
to algebraic cpos or algebraic domains.

We have the following relation between admissibility and the reduction
ordering of domain representations.

Theorem 7.6. Let C be the class of dense algebraic cpos. Then D =
(D, DR, v) is a largest representation of X with respect to < over C if, and
only if, D is an admissible representation of X over C.

The theorem is true for any reasonable class C. It is proved by considering
a direct sum of a largest representation of X and (E, Ef) € C.

Admissibility has implications on the nature of the coding function of
the representation. The following is observed in Hamrin [40].

Theorem 7.7. Let D be an algebraic cpo and assume (D, DR, v) is an
admissible domain representation of X over the class of dense algebraic cpos.
Then v is a quotient mapping.

The key point here is that open sets can be characterised using nets of
arbitrary large cardinalities. On the other hand we are primarily interested
in effective representations D and hence D, must be countable. It is therefore
interesting to introduce cardinality restrictions to the notion of admissibility.

Definition 7.8. Let s be an infinite cardinal and let C be a class of algebraic
cpos with totality. Let D = (D, D%, v) be a domain representation of a
topological space X. Then D is a k-admissible representation of X over C
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if whenever (E, E®) € C, the cardinality of E,. is less or equal to K, and
¢: EF — X is continuous, then there is a continuous _function ¢:E — D
such that ¢[ET] C D and for each w € Ef, ¢(w) = vo(w).

Recall that if the coding function v was a quotient then every repre-
sentable function is a continuous. For k-admissible k-based representations
we have a precise characterisation of the representable functions. We for-
mulate it here for kK = w so as not to introduce the notion of a k-continuous
function.

Theorem 7.9. Let C be the class of dense algebraic cpos with totality or
the class of dense domains with totality. Suppose that (D,D®) € C and
D = (D,DR,V) 1s a countably based representation of X such that D is
w-admissible over C. Let E = (E,ET 1) be a representation of Y which is
w-admissible over C. Then a function f: X — Y is representable over D
and E if, and only if, f is sequentially continuous.

Recall that continuous functions are sequentially continuous.

Finally we mention a theorem from Hamrin [40] characterising the spaces
representable by k-admissible and x-based domains.

We say that a topological space X has a k-pseudobase if there is a family
B C p(X) such that for each open set U C X and each k-net S — x € U
there is B € B such that x € B C U and S is eventually in B. A k-net is a
net of cardinality at most k. Thus a space X has an w-pseudobase B if the
condition holds for each open set U and each sequence (z,), approaching
zel.

The space of test functions used in distribution theory is an example
of a topological space that is not second countable but has a countable
pseudobase. (See Section 10.6.)

Theorem 7.10. A topological space X has a k-based and k-admissible do-
main representation if, and only if, X is a Typ-space and has a pseudobase
of size at most k.

It has been shown by Schréder [61] using TTE that the category of spaces
representable by w-based and w-admissible domains is cartesian closed. In
fact, this category coincides with the category QCB consisting of topological
spaces that are quotients of second countable spaces, see Menni and Simpson
[50]. For k > w the question of finding a large cartesian closed category of
topological spaces is unclear.

8 TTE and domain representability

An important and successful approach to computability on topological al-
gebras and to Computable Analysis is Type 2 Theory of Effectivity, abbre-
viated as TTE. A large amount of work has been done using this approach
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by K. Weihrauch, his students and collaborators, and others. The idea is to
generalise the basic definition of a numbering, replacing the natural num-
bers N with the Baire space F = N — N and giving F the Baire topology,
or, more generally, with X“ where X is a finite or countable set. Then
the established computability theory on »“ induces computability on the
represented space via the numbering.

We will relate TTE to (effective) domain representability. For simplicity
we restrict ourselves to the Baire space, leaving the simple coding necessary
when going to finite X.

Let X be a topological space. We say that a partial surjective function
p:dom(p) C F — X is a TTE-representation of X if p is continuous. An
element x € X is p-computable if there is a recursive function in dom(p)
such that p(f) = x.

Suppose n:dom(n) € F — Y is a TTE-representation of Y. Then a
function f: X — Y is TTE-representable with respect to p and 7 if there is
a continuous partial function f:dom(f) C F — F tracking f, i.e., f(p(z)) =
n(f(z)) for each € dom(p). The function f is (p, n)-effective if there is a
computable tracking function f for f.

A first observation is that the Baire space F naturally extends to an
algebraic domain B = N<¥ U with the ordering w < v <= w is an initial
segment of v. The usual Baire topology on F is the subspace topology
obtained from the Scott topology on B. We call B the Baire domain.

It is well-known that each partial continuous function f:dom(f) CF —
F extends to a total continuous function f:B — B. Furthermore, if f is
computable then f can be chosen to be effective in a uniform way from f.
From these observations we have the following equivalence theorem:

Theorem 8.1. Let p:dom(p) C F — X be a TTE-representation of X.
Then (B, dom(p), p) is an effective domain representation of X. An element
x € X is p-computable in the TTE sense if, and only if, it is computable in
the Baire domain representation sense.

Furthermore, if n:dom(n) CF — Y is a TTE representation of Y then
f: X =Y is TTE-representable (and effective) with respect to p and n in
the TTE sense if, and only if, f is representable (and effective) with respect
to p and n in the Baire domain representation sense.

For the converse reduction we have the following observation.

Lemma 8.2. If D is a countably based algebraic domain then there is a
surjective quotient map ¢:B — D. Furthermore p[F] = D.

Proof. Let (a;) be an enumeration of D.. For w € N<“ we define p(w)
as follows. Let v < w be the largest initial segment such that {a,q : i <
length of w} is consistent and let p(w) = | [{ay@) : i < length of v}. Then
¢ is monotone on N<“ and hence extends uniquely to a continuous function
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on B, which is easily seen to be a quotient. For x € D let w € F be such
that approx(z) = {a,() : 4 € N}. Then clearly p(w) = =. O

It follows from the proof that if (D, «) is an effective domain then ¢ is
effective, using the numbering of D, given by a. Furthermore, Dy = [Fi].
Thus we obtain

Theorem 8.3. Let (D, D% v,a) be an effective domain representation of
X. Then there is a TTE-representation p:dom(p) C F — X such that the
sets of computable elements of X with respect to the two representations
coincide.

Proof. Let ¢:B — D be as in Lemma 8.2 and define p: o ' [DF]NF — X
by p(z) = vip(a). .

We now consider representable functions. Let (D,«) and (E, () be
countably based domains and let p:B — D and ¥:B — E be the effec-
tive surjections obtained from Lemma 8.2. The following can be proved
along similar lines.

Lemma 8.4. Suppose f: D — E is («, 8)-effective. Then there is an effec-
tive function f:B — B, obtained uniformly from f, such that fIF] CF, and
for each x € F, ¢ f(x) = fo(x).

Theorem 8.5. Let D = (D, D" v,a) and E = (E,E" u,3) be effective
domain representations of topological spaces X and Y, respectively. There
are TTE-representations p and n of X and Y, respectively, such that if
f: X =Y is effectively representable over (D,a) and (E, [3) then f is effec-
tively representable with respect to p and 7.

Proof. Let ¢:B — D and ¥:B — FE be the effective surjections obtained
from Lemma 8.2, and let f: D — E be an («, 3)-effective representation of
f:X =Y. Let f:]B% — B be the effective function obtained from f as in
Lemma 8.4. Then we define p: o '[DF]NF — X by p = vy, and, similarly,
n:p Y ER]NF — Y by n = utp. These are clearly continuous surjections
and hence TTE-representations. Furthermore, for each x € = }[DF¥] N,

fo(x) = fro(e) = pfo(x) = w f() = nf(z),
which shows that f is effectively representable with respect to p and n. [

A detailed analysis of the relationship between domain representability,
using the category EQU of equilogical spaces [5], and TTE is given in Bauer
[4]. Dahlgren [21] shows that there is an adjoint pair of effective functors
taking a TTE-representation of a topological space X to an effective domain
representation of X and, conversely, taking an effective domain representa-
tion of X to a TTE-representation of X.
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9 Standard constructions

In this section we consider various standard ways to obtain algebraic domain
representations.

9.1 Representation of inverse limits and ultrametric algebras

We introduced domain representations to analyse the computability of topo-
logical algebras. We wanted to study the completions of local rings and
algebras of infinite processes. Both algebras were constructed as countable
inverse limits of algebras; such limits posessed ultrametrics and were there-
fore topological algebras. Many algebras of interest in computing have this
form. The following special construction for countable inverse limits was
introduced in Stoltenberg-Hansen and Tucker [71, 72, 73].

Let A = (A, 01,...,0r) be a Y-algebra and let {=,},en be a family
of congruences on A. We say that {=,},en is separating if n > m and
r=py = r=p Yy, and if ey =0 = {(z,2) 12 € A}.

There is an abundance of natural examples of algebras with a family
of separating congruences. For a simple example, let T'(X, X) be the term
algebra over a signature 3 and a set of variables X. Then, for ¢,¢' € T'(2, X),
let t =, t' if t and ¢’ are identical up to height n — 1, for n € N. Further
examples will be given in Section 10.

Given a Y-algebra A together with a family {=,, },en of separating con-
gruences we define a metric d on A by

d(z,y) = 0 ife=y
VTN 2 g #+ 1y, where n is least s.t. x %, y.

The metric d is an ultrametric, i.e., d satisfies the stronger triangle inequality
d(z,y) < max{d(z, z),d(z,y)}.
Furthermore, each operation o on A is non-expansive, i.e., satisfies
dlo(x1y... xn),0(Y1y -y yn)) < max{d(x;,y;): 1 <i<n}.

Conversely, suppose (A4, d) is an ultrametric algebra with non-expansive
operations. Then we define a family {=, }pen by © =, vy <= d(z,y) <27

Given a Y-algebra A with a family of separating congruences {=, }nen
we form the Y-algebra

A=I1lmA/=,,

the inverse limit of the A/=, with respect to the homomorphisms ¢, :
A/=, — A/=,, defined by ¢y, ([aln) = [a]m, for n > m. Here [a],, denotes
the equivalence class of a with respect to =,,.

The inverse limit A = lim._ A/=, is a completion of A. The completion
of T'(X, X) is the set T°°(X, X) of all finite and infinite terms. The (metric)
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completion of an ultrametric algebra A with non-expansive operations is
isomorphic as topological algebras to the inverse limit A = lim_ Al=,,
where =,, is obtained from the metric as above.

To construct a domain representation of lim.. A/=,, let

C=|J{A/=n:neN},
the disjoint union of the A/=,,. Order C by
[alm E [b]n, <= m <nanda=,,>

Let D(A) = C, the ideal completion of C. Then D(A) is an algebraic domain
of a rather simple kind. It is a tree of height w, where the maximal elements
of the domain correspond to the infinite branches of the tree.

There is an embedding of A = lim. A/=,, into D(A),,, the maximal
elements of D(A), given by ¢(z) = {[¢n(x)]n : n € N}, where ¢: A — A/=,
is the mapping obtained from the inverse limit construction.

Let o be a k-ary operation on A. We define ¢,: D(A)* — D(A) by

¢U([a1]n17 R [ak]nk]) = [0-((117 cee ,ak)]min{nl,...,nk}'

Then ¢, is well-defined and monotone and hence extends to a continuous
function ¢,: D(A) — D(A) representing o on A.

As a final remark we mention that the Banach fixed point theorem for
an ultrametric space A is a direct consequence of the fixed point theorem
for D(A).

9.2 Standard representation of regular spaces

In the previous section we described how ultrametric spaces and certain
inverse limit spaces have homeomorphic domain representations using the
maximal elements of the domain. However, it is an easy fact that the set of
maximal elements of an algebraic domain is totally disconnected, whereas
essentially all spaces used in analysis are not. If one wants to keep dealing
with homeomorphic representations using maximal elements one is forced to
consider a larger class of domains such as continuous cpos. Here we continue
to consider the simpler structures of algebraic domains and drop the wish
for a homeomorphic representation. From a computational viewpoint this
is not as problematic as it may seem since the computations take place on
the representing structure.

Many spaces, such as the real numbers, cannot be constructed as inverse
limits. Thus we must find other constructions when representing a wider
class of spaces. In Stoltenberg-Hansen and Tucker [75] we introduced the
following general method to represent regular spaces.
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Definition 9.1. Let X be a topological space. Then a family P of non-
empty subsets of X is a neighbourhood system if X € P and

(i) if F,G € Pand FNG # ) then FNG € P; and
(ii) if € U, where U is open, then (3F € P)(z € F° C F CU).

For F C X, F° denotes the interior of F' and F denotes the closure of
F'. Note that (ii) forces the space X to be regular.

Examples are topological bases of non-empty open (or closed) sets of a
regular space X. Another example is a sufficiently rich family of non-empty
compact sets in a locally compact space. The set of approximations for R
in Example 3.1 is a countable and effective neighbourhood system.

Let P be a neighbourhood system for X. Then P = (P,D2,X) is an
approximation structure for X via the approximation

F<Lrx<zxzel.

Let P be the ideal completion of P. It is an algebraic domain. (Condition
(i) is only used to show consistent completeness.)

An ideal I € P converges to a point z € X if for every open set U
containing = there is F' € I such that x € FF C U. [ converges to z is
denoted by I — x. Note that a converging ideal converges to a unique point
for a Ty space X (which we include in our definition of regularity).

We let P® = {I € P:I convergent} and define v: P® — X by

v(l) =z < [ — .
For x € X we define the ideal I, by

I,={FeP:xecF°}.
Note that I, — z and that J -z <— I, C J.

Theorem 9.2. Let X be a reqular space and P a neighbourhood system for
X. Then P is an algebraic domain and (P, PR, v) is a retract representation
of X.

Proof. Suppose U C X is open and v([) = x € U. By Definition 9.1 (ii)
there is F' € P such that z € F° C F C U. Thus F € I, and hence F € I.
Suppose J € P® and F € J. Then, clearly v(J) € F, i.e., v(1FNPE) CU.
(As usual F is identified with its principal ideal |F.) Thus v is continuous.

Define n: X — P% by n(x) = I,. Then von = idx. Furthermore 7 is
continuous since for F' € P,

n'MFNPYY={reX:Fel,}={re€ X:x € F°} = F°.
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Next we consider the problem of lifting continuous functions to the rep-
resenting domains.

Theorem 9.3. Let X and Y be regular spaces with neighbourhood systems
P and Q, respectively. Let (P,PR, v) and (Q, QR,M) be the domain repre-
sentations of X and Y obtained from P and Q. Suppose f: X — Y is a
continuous function. Then there is a continuous function f: P — Q such
that for all I € PR,

p(f(I)) = f(v(I)),

i.e., f is a lifting or representation of f.

Proof. Given continuous f: X — Y define f: P — Q by
f(F)={GeQ: f[F] CG°}.

It is easily verified that f(F) is an ideal and that f is monotone. We also
denote by f its unique continuous extension to all of P. In fact for I € P,

FI) ={GeQ:@F e I)(f[F] € G°)}.

Suppose I € P® and v(I) = x. Then I, C I and hence f(I,) C f(I). Thus
it suffices to show that Iy, C f(L).

Let G € Iy;). Then f(z) € G° and € f'[G°]. But then there is
F € I, such that F C f~'[G°]. This shows that G € f(I,). O

In case P and Q are effective representations for X and Y, respectively,
we see from the proof that the crucial point for knowing that a continuous
function f: X — Y is effective with respect to the representations is that
the relation f[F] C G° for F' € P and G € @ is semidecidable.

The standard notion of a computable function on R is the one by Grze-
gorczyk [39]. Applying the above to the neighbourhood system P for R
from Example 3.1 with a standard numbering we have the following theo-
rem proved in [75].

Theorem 9.4. A function f:R — R is computable in the sense of Grzegor-
czyk if, and only if, it is effective with respect to the above representation of
R.

9.3 Representation of metric spaces

Most topological spaces of interest possess useful metrics that can define
their open sets. In analysis these metrics typically come from norms whose
general theory involves Banach spaces and Hilbert spaces, for example. The
effective content of metric spaces was analysed early on in a constructive
framework in Ceitin [18] - see also the monograph Kushner [44]. Funda-
mental early contributions based on computability theory are Lacombe [47]
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and Moschovakis [52]. Banach spaces have received special attention in
Pour El and Richards [58], where the computability of linear operators was
classified. The computability of homomorphisms between metric algebras
in general is studied in Stoltenberg-Hansen and Tucker [78]. We will now
consider effectivity in metric spaces using domain representations following
Blanck [8, 9].

We say that a metric space (X, d) is recursive in the sense of Moschovakis
if there is a numbering a: {2, — X such that the metric d: X x X — Ry is
(a, p)-computable, where p is a standard numbering of the recursive reals
R.

This is a very general definition. The difficulty from a computational
point of view is that calculations with distances are limited to those possible
with recursive reals. Nonetheless it is possible to give a weakly effective
domain representation to (the completion of) a recursive metric space along
the lines given below. We shall not pursue this here. Instead we give an
alternative definition that strengthens the computability of the space while
still covering important examples.

By an ordered field K we mean a field K = (K,+,—, x,0,1,<). The
field K is computable if there is a numbering v: N — K such that all the
operations and the relation < (and hence =) are y-computable. It is known
that if K is a computable ordered field then its real closure is computable
as an ordered field (Madison [48]). Furthermore, if K is archimedian then
K can be computably embedded into Ry, (Lachlan and Madison [46]).

Now we say that the metric space (A,d) is computable if there is a
numbering a:N — A and a computable archimedian ordered field (K, ~)
such that d takes values in K and d is (a X «a,)-computable. We extend
this to a possibly uncountable metric space (X, d) by saying tha (X,d) is
effective if there is a dense subset A C X such that (A,d) is computable.
Examples of effective metric spaces are the Euclidean spaces R™, the space
(10, 1] of continuous functions [0, 1] — R with the sup norm, and LP spaces
for rational p > 1.

Let (X,d) be a metric space with a dense subset A. A formal closed
ball is a ‘notation’ F,,, where a € A and r € Q, the set of non-negative
rational numbers. The formal ball is a name or syntax for a closed ball and
we may write it semantically by

For={x€ X :d(a,z) <r}.

Two formal balls are consistent, Fo,1Fps, if d(a,b) < r+s. And F,,
formally contains Fy s, Fo, T Fy g, if d(a,b) + s <.

A set {Fy, ry,-..,Fa,r,} of formal balls is permissible if the balls are
pairwise consistent and no ball is contained within another, i.e., for 1 <17 <
J <n, Fy, .1 Fo; r; and it is not the case that Fy, ., C Fy; . or Fy, . & Fy,
We use the notation o, 7 for permissible sets.
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Let P be the set of all permissible sets of formal balls. We need to extend
the relation C to permissible sets:

oL T (VFy, €0)3Fs €T)(Fur C Fp).

Note that consistency is characterised by
ol 7<= (VFy, €0)VFys €T)(Fur T Fps).

Given consistent permissible sets o and 7, the supremum o U7 = g(o,7)
where g removes those formal balls in o U 7 formally containing others.

The following is immediate from the construction above. But note that
we need to consider sets of formal balls in order to be able to compute the
supremum operation.

Lemma 9.5. If (A,d) is a computable metric space then the obtained struc-
ture P = (P,C, 1,U, L) is computable with a numbering o obtained from the
numbering of A.

We now let D = P, the ideal completion of P. Thus (D, «) is an effective
domain.

Anideal I € D is converging if for any € > 0 there exists {Fy ,} € I such
that » < e. An element = € A, the metric completion of A, is approzimated
by the ideal I if (Vo € I)(VF,, € o)(z € Fu,). A convergent ideal I

approximates exactly one element z in A; we write I — z. Let DF = {I €
D: I — z € X}. The function v: D — X defined by

v(l)=zx<=1—=x

is a quotient mapping.
In this way we have obtained an effective domain representation of A
and hence of X.

Theorem 9.6. Each effective metric space (X,d) has an effective domain
representation (D,DR,I/, a) such that the set Xy o of computable elements
in X induced by (D, DT, v, ) is a recursive metric space in the sense of
Moschovakis.

The situation with computable functions between effective metric spaces
is more difficult. We state the following theorem which is, essentially, Theo-
rem 3.4.33 in Blanck [8]. It uses Berger’s generalisation in [6] of the Kreisel-
Lacombe-Shoenfield theorem.

By a semieffective domain we mean one where the consistency relation
on the compact elements need not be decidable. A semieffective domain
representation of X in the theorem below is obtained by taking the dense
part of a standard effective formal ball representation of X.
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Theorem 9.7. Let X and Y be effective metric spaces. Then there exists a
semieffective domain representation (D, Dy, a) of X consisting of permis-
sible sets of formal balls such that together with a standard effective formal
ball representation (E, E®, u, 3) of Y, the following are equivalent.

(i) The function f: Xy o — Yj 3 is computable in the sense of Definition
6.8;

(ii) There is a continuous extension of f to f: X — 'Y that is effective with
respect to the domain representations (D, D®, v, o) and (E, E®, pu, 3).

Note that the function f in (i) is not assumed to be continuous. The im-
plication (i) implies (ii) has the form of Ceitin’s Theorem, that computability
implies effective continuity, as a corollary.

9.4 Representation of partial and discontinuous functions

There are important phenomena in computing that are not continuous. For
example, suppose we model a stream of data as a function from time into a
set of data, where time is thought of as continuous and data is a discrete set.
It is reasonable to model time by the real number line R or a final segment of
R and give the data set the discrete topology. However, the only continuous
functions from R into a discrete set are the constant functions (since R is
a connected space). Thus transmission of discrete data in continuous time
cannot be modelled by continuous functions.

Given domain representations (D, D%, v) of R and (E, E¥, 1) of the data
set A, the domain [D — FE] will contain approximations to arbitrary func-
tions from R to A. There is no hope of having exact continuous represen-
tations of discontinuous functions. But there are best possible approrimate
representations.

Let (D, D, v) and (E, E®, 1) be domain representations of the topolog-
ical spaces X and Y, respectively. Then we say that a function f: X — Y
(not necessarily continuous) is represented approzimately by (or lifts approz-
imately to) f € [D — E] if for each z € D,

(i) f continuous at v(z) = f(z) € Ef and fv(z) = pf(z); and
(ii) f not continuous at v(z) = (3y € pu~[fr(z)])(f(z) C y).

To illustrate we consider the simple example of the floor function [-]: R —
7, which is discontinuous at precisely the integer points. Let (D, D v) be
the standard closed interval representation of R from Example 3.1. For Z
we could have chosen the flat domain Z,. This, however, would give no
information at points of discontinuities. Instead we let £ = p¢(Z) U {Z}
ordered by reverse inclusion D. In fact, E is the upper (or Smyth) power
domain of Z | . Letting ET be the set of maximal elements in F, i.e., the set
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of singletons {n}, we obtain a domain representation (E, Ef, ;1) by mapping
{n} to n.

Define f: D. — E by f(la,b]) = {n € Z : |a] < n < |b]} and extend
f continuously to D. Then clearly f represents the floor function approxi-
mately. But note that at the discontinuity n € R we have for v(I) = n that
f(I) € {n—1,n}. Thus, by choosing our representations with some care we
are able to recover much information also at points of discontinuities.

If a function f has an approximate representation then it has a best
approximate representation.

Theorem 9.8. ([15]) Let (D, D% v) and (E,E®, 1) be algebraic domain
representations of X and Y, respectively. Assume that D® is dense in D,
and that (E, ER 1) satisfies the following local property: if x €y and x €
EL then y € BT and u(z) = p(y). Let f: X — Y be a function and assume
that f has one approximate representation in [D — E]. Then there is a
best approximate representation f € [D — E| in the sense of the domain
ordering.

10 Applications

A theory of computability on topological spaces can be used to analyse com-
putation in many application areas, including analysis, algebra, semantics
of data types and programming, graphics and hardware.

10.1 More on real numbers

Throughout the paper we have chosen the field R of real numbers together
with the closed interval domain representation of Example 3.1, which we
here denote by R, as a canonical example. We have observed that this
representation is an effective dense retract representation, that the elements
in R computable from the representation are precisely the recursive reals,
and that the effective functions from R to R are precisely the functions
computable in the sense of Grzegorczyk. In addition, the representation
is w-admissible and it is a largest representation of R with respect to the
reduction < from Definition 7.3.

Now consider the set C'(R,R) of continuous functions from R to R. This
space has a natural topology, namely the compact-open topology. The set
C(R,R) has a natural domain representation [R — R| where the represent-
ing elements [R — R are those continuous domain functions representing
functions in C(R,R). The obtained function

v:[R = R|F = C(R,R)

induces a topology on C(R,R) from the relativised Scott topology on [R —
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R]® which coincides with the compact-open topology (see Blanck [11]), i.e.,
([R — R],[R — R]",v)

is a domain representation of C'(R,R). Di Gianantonio [23] used signed digit
representations of real numbers to construct another domain representation
capturing the compact-open topology of C(R,R).

It is well-known that C'(R, R) is not locally compact and hence there is no
‘natural’ topology on C(C(R,R),R). On the other hand the type structure
over R is well-behaved and therefore we can construct a type structure also
over R including C(C(R,R),R) and give each such type a topology.

To make this precise we define the set of finite type symbols as follows:
¢ is a type symbol, and if o and 7 are type symbols then (o — 7) is a type
symbol. The pure type symbols are ty) = ¢ and t,4+1 = (¢, — ¢). For each
type symbol o we define a domain with totality (o(R),o(R)f). Simultane-
ously we define the type o(R) over R and a surjective map v,: o(R)¥ — o(R)
such that (0(R),o(R)f, ) is a domain representation of o(R).

For the base case we use the standard closed interval domain represen-
tation (R, R%,v). Thus we let t(R) = R, t(R)F = RE, ((R) = R and
v, =v.

Inductively let (¢ — 7)(R) = [0(R) — 7(R)] and let (¢ — 7)(R)%
be the set of functions in (¢ — 7)(R) representing a function from o(R)
into 7(R) via v, and v;. Then let (60 — 7)(R) be the set of functions
from o(R) into 7(R) having a representing function in (¢ — 7)(R). Finally
let V(y_.ry: (0 — 7)(R)? — (¢ — 7)(R) be the map taking a representing
function in (¢ — 7)(R) to the function in (¢ — 7)(R) that it represents.

By the fact that the category of effective algebraic domains is cartesian
closed, the domain representations (o(R),c(R)%,v,) induces a topology
(the quotient topology) and effectivity on each type o(R).

D. Normann shows in [55] that each representation (o(R),o(R)%,v,) is
dense. This is analogous to the density theorem for the finite type structure
over the discrete space N of natural numbers proved by Berger [6], but uses
by necessity a different proof. Normann also observes some ‘anomalies’ of
the type structures o(R), e.g., that the space t2(R) is not metrizable.

The natural continuous domain representation for real numbers is the
interval domain consisting of real intervals; this suggests strong connections
to Interval Analysis [51, 1]. For example, an often used notion in Interval
Analysis is the monotone interval function, which is nothing more than a
monotone map on the interval domain. Interval Analysis has traditionally
used the topology induced by the Moore metric, whereas the Scott topol-
ogy has been used for the interval domain. It is easy to construct interval
functions that are continuous with respect to either topology but not both.
In [60] it is shown that for a continuous function f the optimal interval
representation of f is continuous with respect to both topologies.
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Interval Analysis is an established approach to practical exact computa-
tion. The interval domain and certain substructures thereof have also been
used to investigate and reason about the practical implementation of exact
real arithmetic [12, 13]. Thus, domain representations can be used to reason
abstractly about the computability of functions, and to model concretely the
exact steps taken in making exact real computations. Thus, there is evidence
that domain representations may be a powerful tool towards practical exact
computation on many forms of continuous data.

10.2 Local rings

In 1983 we knew a great deal about computable algebra (see, e.g., our later
survey [76]), and our interest in domain representability began with the
problem of investigating the computability of local rings. Thinking about
the completions of local rings, we wanted a general method of introducing
computability into uncountable algebras. There were four algebras in view:
complete local rings, algebras of infinite processes (satisfying Bergstra and
Klop’s laws for ACP), algebras of infinite terms, and the field of real num-
bers. The first three had a common structure: they were inverse limits of
countably many factor algebras and looked like domains!

Let R be a local commutative Noetherian ring whose unique maximal
ideal is m. We showed that m is decidable when R is computable as a ring.
Define for z,y € R and n € N,

r=pyeSr—yEem”

which is decidable. By Krull’s Theorem, {=,, },en is a family of separating
congruences with respect to the ring operations and the general construc-
tions of Section 9.1 can be applied to obtain an effective domain represen-
tation of the completion of R.

The local ring and the general method was circulated in Stoltenberg-
Hansen and Tucker [71] and later published in Stoltenberg-Hansen and
Tucker [72]).

10.3 Process algebra

Think of a process made of atomic actions that can be performed sequen-
tially or in parallel, can be independent or communicate, and can branch
deterministically or non-deterministically. Such processes abound in both
computers and machines, and in nature, too. In process algebra such intu-
itive ideas are analysed very abstractly: processes are modelled and classified
by postulating operations on processes, such as

p-q, pllg and p +q,
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and axioms that they should satisfy. There are many kinds of semantic
ideas to be found in systems so there are many operations and axioms -
see Bergstra and Ponse [7]. In modelling a particular system, the idea is
to devise a specification that is a set of equations, based on some choice
of operations. The semantics of the specification is given by solving the
equations in process algebras satisfying axioms appropriate to the problem.

It is common to need complicated infinite processes in the semantic mod-
elling of systems and so the process algebras used are complicated uncount-
able structures. In particular, with some process algebra methods, the al-
gebras of infinite processes have the beautiful structure of inverse limits of
finite models of equational theories. This means that algebras of infinite pro-
cesses are algebras with ultrametric topologies, and the methods of Section
9.1 can be used to study processes. Applications of solving finite systems
of equations in process algebras are given in [73] and infinite systems of
equations in [74].

10.4 Banach spaces

Functions and functionals on R and C can be approximated in many different
ways. However, the methods used have been found to have two fundamental
properties in common: they use linear combinations of basic functions, and
measure the accuracy of approximations by metrics derived form norms.
Theories of these methods have been created using vector spaces equipped
with norms and other operations, such as Banach spaces, Banach algebras,
Hilbert spaces, and C*-algebras. Since all of these topological algebras are
special kinds of metric spaces, the method for metric spaces, given in Sec-
tion 9.3, can be used to make domain representations for them. Algebraic
domain representations for Banach spaces were made in Stoltenberg-Hansen
and Tucker [77], in order to prove the equivalence of various models of com-
putation, including that of Pour El and Richards designed for Banach spaces.

10.5 (C°° functions

A common way to approximate a continuous function on the real numbers
is by finite collections of compact boxes enclosing the graph of the func-
tion. Tighter boxes covering a larger segment of the graph naturally yield
more information about the function we wish to approximate. This idea
can be generalised to approximations of C* and C* functions on the reals
in a natural way: An approximation of a C* function f is a finite set of
approximations of the the function f and the first k& derivatives of f (as
continuous functions from R to R). Similarly, an approximation of a C'*®
function f on R is a finite set of approximations of the function f and the
first k derivatives of f for some k > 0.

A C* function from R to C can be thought of as a pair of smooth
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functions from R to R (corresponding to the real and imaginary parts of
the function). Thus, we can approximate smooth functions from R to C by
approximating the real and imaginary parts separately. In this way we get
an effective domain representation of the space of smooth functions from R
to C.

10.6 Test functions and distributions

An interesting class of functions in this context is the space D of test func-
tions considered in distribution theory. If we restrict ourselves to one vari-
able, a test function is simply a smooth function from R to C with compact
support. Formally, the space of test functions is constructed as an induc-
tive limit of metrisable spaces, but is itself not metrisable. In fact, it is
not even first countable. Nevertheless, we may construct an effective do-
main representation of D and study computable processes on the space of
test functions. This is interesting from a purely computability theoretic
point of view since it has sometimes been argued that the stronger property
of second countability is needed to develop a viable computability theory
on a topological space (c.f. Smyth [65]). To approximate a test function
f we simply add information about (i.e. bounds on) the support of f to
a C°(R)-approximation of f. This idea yields an w-admissible effective
domain representation of the space of test functions and thus allows us to
introduce a notion of computability on D. We note that standard operations
on D such as integration, differentiation, regularisation, addition, and scalar
multiplication are all effective with respect to this representation.

A distribution is a continuous linear functional on the space of test func-
tions. Since we have effective representations of the spaces D and C, general
domain theory yields an effective domain representation of the space of dis-
tributions. Moreover, similar methods may be applied to construct effective
representations of the spaces of tempered distributions and distributions
with compact support. This allows us to introduce a notion of computabil-
ity on the space of distributions in the spirit of Weihrauch and Zhong [88],
and to study computable processes on spaces of distributions. In particu-
lar, the space of distributions, the space of tempered distributions, and the
space of distributions with compact support are all effective vector spaces,
the standard embedding theorems effectivise, and the Fourier transform and
its inverse lift to effective functions on the space of tempered distributions.
For details, see Dahlgren [22].

10.7 Volume graphics

In volume graphics, objects are defined in 3 dimensions. Objects can be
regular, like buildings and crockery, or irregular but structured, like 3D body
scans, or amorphous like clouds and fire. The objects may be combined to
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create 3D scenes. In volume graphics, objects and scenes must be created,
transformed and rendered in 2D.

In practice, different objects can have quite different representations,
ranging from a collection of simple mathematical functions to large 3D ar-
rays of physical data. Constructive volume geometry (CVG) is a high-level
approach to volume graphics that abstracts from specific representations by
focussing on high level operations on volume objects. First, to unify repre-
sentations, each spatial object is required to assign data, called attributes,
to every point in 3D. Thus, spatial objects are modelled by vectors

¢17"'7¢k‘

of scalar fields of the form:
¢:R3 — [0,1] or ¢: R — R.

The attributes chosen depend on the application. For example, a simple
graphics application is the RGB model which has k = 4 and attributes of
opacity, measured by the interval [0, 1], and colours red (R), green (G) and
blue (B), measured by R.

Then operations on these objects are defined to make algebras of spatial
objects. There are lots of simple operations to create RGB algebras, with
attributes opacity and three colours. CVG algebras are as varied as the
applications of computer graphics.

CVG was first proposed in Chen and Tucker [19], where various oper-
ations and their laws were given, the high-level representation of graphics
objects using CVG terms explained, and recursive rendering via structural
induction on terms introduced. In [19], the scalar fields are total functions,
which simplifies the algebra. A fuller mathematical treatment of CVG, in-
cluding approximation, is in Johnson [42].

Computation in CVG involves computation on real numbers, real-valued
functions and operators. To understand the semantics of the CVG pro-
gramming the framework needs to be analysed by a computabilty theory
for topological spaces. In Blanck, Stoltenberg-Hansen and Tucker [16] we
consider computability with partial functions and apply the theory to the
computability of CVG algebras, such as the RGB algebras.

10.8 Analogue and digital systems

In computer science the interfaces between continuous and discrete data
types are not well understood. Domains and topological spaces are designed
to model continuous data, but they can also model discrete data. Can
domain representations model computation with continuous and discrete
data in a uniform way? Yes.
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Consider analogue and digital data and the interface between them. A
data stream is a sequence of data indexed by time. Mathematically, we
model data streams by functions

s:T — A

where s(t) = datum or measurement from A at time t. The functions may
be total or partial.

There are several cases of practical importance to consider, especially
the purely digital case:

discrete time 7' = Z and discrete data A = {0,1};
and the purely analogue case:
continuous time 7' = R and continuous data A = R.
We model computation with these streams by mappings of the form
F:[T — Al — [T" — B]

where T, T' are time scales and A, B are data types. The stream transforma-
tions include analogue-to-digital and digital-to-analogue transformations.

We have seen a number of mathematical tools to tackle the problem
of analysing the semantics of analogue versus digital computing and signal
processing, starting with domain representations of the reals. In applying
domain representations and computability theory we focus on streams and
stream transformers that are continuous functions. (The functions may be
partial to help model discontinuities in streams.) The interface between
analogue and digital computation is studied in [15], using domain represen-
tations of spaces with the compact-open topology.

10.9 Applications using continuous domains

Let us remind the reader that in this introduction to domain representation
theory we have used algebraic domains exclusively and concentrated on our
own interests. As emphasised earlier, one can use many types of ordered
structure for representation. In particular, A. Edalat has used continuous
domains to represent topological spaces in many applications, including sev-
eral areas we have not discussed here.

The early applications of continuous domain representations focussed on
semantic modelling of case studies of mathematical approximation, includ-
ing iterative maps and integration, see Edalat [24, 25, 26]. This was done
without emphasis on computability. A great deal of effort was devoted to
using domains to develop software for exact arithmetic on computers.

With the rise of Computable Analysis, later studies of metric spaces in
Edalat and Heckmann [27], real numbers in Edalat and Stinderhauf [31] and
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Banach spaces in Edalat and Stinderhauf [32] looked at computability and
may be compared with approaches based on algebraic domains mentioned
above.

Recently, new subjects have been started. There is extensive work on
computational geometry and Constructive Solid Geometry (CSG), which is
a modelling technique well-established in CAD, see Edalat and Lieutier [28].
CSG is a precursor to CVG mentioned in subsection 10.7. Some first steps
into the rich and vast subject of calculus and solving differential equations
have been also taken in [29, 30].

The use of continuous domains has the advantage that often (but not
always) D may be chosen as the set of maximal elements of D and the
definition of representability is then reformulated in these terms. A disad-
vantage is that the theory of continuous domains is more involved. We have
stuck to algebraic cpos and domains because of their simplicity and the fact
that they arise from our consideration of approximation structures. More-
over, it is well known that every continuous cpo is a retract of an algebraic
cpo. It follows that the two approaches of using continuous representations
or merely algebraic representations are essentially equivalent.
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