
In: F de Boer, M van der Heijden, P Klint, J Rutten (eds.), Liber Amicorum, J W de
Bakker, CWI, Amsterdam, 197-221

Origins of our Theory of Computation on Abstract Data
Types at the Mathematical Centre, Amsterdam, 1979-80

J V Tucker
Department of Computer Science, University of Wales Swansea,

Singleton Park, Swansea, Wales, SA2 8PP

J I Zucker
Department of Computing and Software, McMaster University,

Hamilton, Ontario, Canada, L8S 4L7

To Jaco de Bakker
With gratitude, admiration and affection

1. Introduction

In 1979 the authors (hereafter JVT and JIZ) began our work together on developing a
theory of computation that works for any data. We were members of Jaco de Bakker’s
research group at the Mathematical Centre. There we learnt about the semantics of
programs and specifications, and about proof systems for program verification. There we
found the mathematical form of our theory and its first application in computing. We
will recall those times, describe the beginnings of our research programme, record some
of Jaco’s influence, and mention some present developments.

Our theory is about computation over arbitrary data types. It combines the algebraic
theory of data with different programming language constructs and their semantics. Data
is modelled using many sorted universal algebras and specified using equations or
conditional equations. Programming constructs of many kinds control and extend the
operations and tests of the algebra to compute sets and functions on the data. The theory
is a generalisation of the now classical theory of computable functions on natural
numbers or strings.

In 1979 the theories of programming language semantics and data types were both young.
From the beginning, we have aimed to create a comprehensive mathematical theory for
computing functions and sets, and to develop plenty of applications. In fact we have
aimed to match, and in some areas supersede, classical computation theory based on
natural numbers or strings. How much we have succeeded is for another occasion to
judge. Something of a progress report was contained in J W de Bakker, 25 Jaar
Semantiek: Liber Amicorum in 1989. We include our current bibliography for interest.
We are still working on both theoretical and applied problems and there are many

problems in our research plans awaiting their turn. For the past few years we have been
particularly focussed on computational problems on discrete and continuous data types
and the analysis of that interface.

At the heart of our work is our theory of computable functions and semicomputable sets
on many sorted algebras. Our theory is abstract in the sense that computations are
independent of the representations of data and so are isomorphism invariants. It is
general in the sense that it covers all data types - since all data can be modelled by many
sorted algebras. Thus, from our theory of computable functions on algebras we can
derive computability theories on particular classical data types, like number systems (e.g.,
natural numbers, real numbers, and complex numbers) and syntax (e.g., strings, terms).
We can also derive computability theories for mathematical constructions (e.g., spaces of
continuous functions) and general axiomatic classes of data types (e.g., semigroups,
groups, rings, fields, vector spaces, Banach and Hilbert spaces). We can add storage
structures (e.g., arrays, stacks and queues) and notions like time (e.g., timed data streams
and waveforms) and location (e.g., addresses and co-ordinate systems). Over the years
we have considered all of these examples of many sorted algebras.

Recently, we published a 200 page survey (Tucker and Zucker [2000]) of our theory,
based on one of the simplest models of computation that we have studied in depth,
namely the while programming language and its extensions. This survey contains a
detailed history of the subject and account of the principal theorems. It also has a taste of
our current research problems, namely to use the general theory to create a theory of
computation on topological data and apply it in modelling, specification and
programming.

Our first publication was Program correctness over abstract data types with error-state
semantics (Tucker and Zucker [1988]). It was a research monograph based on Jaco’s
book The Mathematical Theory of Program Correctness (De Bakker [1980]). It
generalised and extended Jaco’s work on semantics and proof systems for program
correctness. Its last chapter was on computable functions on many sorted algebras.

2. At The Mathematical Centre 1978-79

2.1 Background
In 1978, the Mathematical Centre, or MC, was at the Tweede Boerhaavestraat, next to the
old Amstel Brewery. Its Director was Aad van Wijngaarden. A lot of excellent people in
Computer Science had worked there almost from its inception in 1946. The Director had
joined the MC in 1947 and begun work on the construction of the first Dutch computers
(the ARRA, ARMAC and X1). Among his 15 doctoral students and former colleagues at
the MC were most of the Dutch professoriate in the period. In 1978 three of his students
were at the MC: Jaco, Hans van Vliet and Dick Grune. Peter van Emde Boas had recently
moved to Amsterdam University but was frequently to be met at the MC. In 1978, the
MC had a mature and strong computer science research culture.

Jaco joined the MC in 1964 and was awarded his doctorate under van Wijngaarden in
1967. Jaco was a theoretical computer scientist with a fine international reputation as a
pioneer in the field of programming language semantics. He was also experienced in
organising and encouraging this new scientific field through the foundation of the
European Association for Theoretical Computer Science (EATCS), journals like
Elsevier’s Theoretical Computer Science, and international summer schools at the MC.
He was Head of the Computer Science Department, which was small but first-rate.

While doing research, Jaco was also engaged in writing his graduate textbook and
research monograph The Mathematical Theory of Program Correctness. This book was
to give a self-contained account of the semantics of imperative programming language
constructs. These constructs were introduced one by one, in small languages designed to
focus on the computational ideas behind the construct. The operational and denotational
styles of semantics were introduced and proved equivalent. Furthermore, for the
constructs and their languages, a Floyd-Hoare logic was given to prove partial
correctness assertions. Each logic was proved sound and complete with respect to its
semantics. All computations, specifications and proof systems involved natural numbers
and Booleans only.

At the time defining the meaning of programming constructs and languages was in some
circles an important methodological problem. Program verification had to seen against
the backcloth of axiomatic semantics. This was the idea that one could specify the
meaning of a programming language by postulating axioms and rules for a logic to prove
the correctness of programs. This was a high-level approach to defining the meaning of a
programming language and one centred on the user of the language.

Euclid had axiomatised geometry circa 300 BC, and axiomatic foundations for the rest of
mathematics had been created in the 19th and early 20th centuries. The conception was
simple enough, but the implementation was exciting and hugely ambitious. The
possibility of an axiomatic semantics for a programming language first appears in Floyd
[1967] and is beautifully explored in Hoare [1968]. Axiomatic approaches to other
programming issues had appeared: for example, van Wijngaarden [1966] for computer
arithmetic, and De Bakker [1968]. The whole enterprise would now be seen as part of
the search for verification methods for software (Jones [1994]).

In the 1970s proof rules were being invented for constructs that had no independent
semantics. Faulty rules were not uncommon. The problem of correctness was recognised
as a fundamental and pervasive problem and was being attacked by formal methods, but
the first formal methods lacked theoretical foundations. Jaco’s book was part of the
research effort into providing these foundations.

Assisting Jaco at the MC was Arie de Bruin, who was working on his PhD thesis under
Jaco’s supervision (De Bruin [1986]). Former colleagues in semantics at the MC had
moved on but were in regular contact, including Willem Paul de Roever (at Utrecht) and
Krzysztof Apt (at Rotterdam).

Among the cognoscenti in 1979, research in concurrency was recognised as a large,
exciting and open area. Willem Paul had visited Tony Hoare in Belfast and become
interested in CSP. The paper Owicki and Gries [1976] was taken up in new work by
Willem Paul and Krzysztof. Their seminars and pre-prints were attracting a great deal of
attention locally and internationally (Apt, Francez, and De Roever [1980]). Much later
they were to write their own books Apt and Olderog [1991], Francez [1992], De Roever
et al [2001]

Although Jaco’s book was completed at the time concurrency research was taking off
semantically, he did not attempt to include parallelism. In Chapter 7 (page 258), on
Nondeterminsitic Statements, Jaco gives as the first of three reasons for the study of
nondeterministic choice

S1 » S2
its role in the arbitrarily interleaving semantics of parallel execution. However, he noted
that “… the present status of the research on the semantics and proof theory of
parallelism is, in our opinion, not yet such that it justifies a treatment on the textbook
level…”

Indeed, it all looked awfully difficult to JIZ and JVT at the time.

2.2 Our Collaboration
JIZ joined Jaco’s group in September 1978, moving from Dirk van Dalen’s logic group at
Utrecht. JIZ was an experienced logician and proof theorist, and was settled in the
Netherlands having held appointments in Amsterdam and Eindhoven. JIZ's colleagues
during his three years with Dirk's group in Utrecht (1975-1978) had included two of
Dirk's doctoral students, Jan Willem Klop and Jan Bergstra, who would later have a
profound impact on Dutch computer science.

JVT joined in January 1979 from Oslo where he had been a member of the group of Jens
Erik Fenstad on generalised recursion theory. JVT’s colleagues during his two years with
Jens Erik included Dag Normann, Viggo Stoltenberg-Hansen and Johan Moldestad. He
had written to Jaco describing his research and inquiring if there were any visiting posts
now or in the future. It turned out that Krzysztof was leaving the MC for Rotterdam and
there was a vacancy. Jaco invited JVT to come for a year. They had not yet met.

JIZ and JVT shared the end office in the little “temporary” building in the courtyard of
the MC. Accommodation at the Tweede Boerhaavestraat was tight. From the ground
floor of the main building, you passed into the courtyard, beside the windows of the
punch card room, and into a single storey prefab with offices on one side of a corridor
only, stocked with computer scientists. Our office was at the far end. There were two
grey metal desks in the centre of the room, at which we sat facing one another. This was
ideal for conversation. JIZ sat with his back to the window, his papers and notes
surrounded by 3B Staedtler pencils and erasers.

The collaboration got off to an excellent start. JVT was impressed by JIZ's wide
intellectual interests, especially his knowledge of logic, philosophy and linguistics, partly
represented by the excellent collection of books which filled the grey metal bookcases in
our office. JIZ was impressed, then and later, by JVT's facility for social interaction,
based on a natural curiosity about other people, and an ability to draw them out about
their own ideas, and discern connections with his work - a talent which led to a number of
fruitful collaborations with different researchers.

JIZ and JVT had a lot in common. We were devoted to logic, loved literature, and
delighted in conversation. JIZ was deeply committed to music and JVT enthralled by
fine art. We were both at the MC to learn, too. Our logical expertise had given us a close
connection with theoretical computer science. From different directions – proof theory
and computability theory - we were now simply moving into the subject. Jaco’s
department was the first computer science department either of us had worked in. We
were by no means the first or the last logicians to enter the subject through joining Jaco’s
department!

Our immediate next door neighbours were Hans van Vliet and Dick Grune who were
involved in the later stages of the Algol 68 project. They kept a coffee percolator in their
room. They were frequently interrupted when in residence by serious coffee drinkers like
us, and by the noise of our animated conversations. Hans and Dick both worked for long
periods on the computers in a terminal room in the main building. Their neighbours were
Paul Klint and Lambert Meertens, also often in the terminal room. JIZ was, probably, the
only inhabitant of the courtyard who did not smoke at that time.

Other theoreticians at the MC were Paul Vitanyi and Peter J Asveld, who were working
on complexity theory and formal languages in the main building. High up in the main
building was Jaco’s office, where all good bosses should be.

Our working days had a pattern. JIZ arrived early and JVT arrived late, though always
with time to do something before the morning visit of Mien, the tea lady, which signalled
the start of our daily conversation. JVT spent at least an hour exploring the library every
day. For the pleasure of browsing, no library compared with the MC’s. Each day we
went out to lunch in a small sandwich and coffee shop in the Weesperplein, often with
Paul and Peter. The talk was largely of theoretical computer science. The afternoon was
very much for conversation.

In January 1979 we started to discuss two subjects of interest to us, a little each day. The
topics seemed quite independent.

1. Logics for program verification and the semantics of imperative constructs, based on
Jaco’s approach, and the soundness and completeness of Floyd-Hoare logics, based on
Steve Cook’s approach.

2. The generalisation of computability theory from natural numbers to arbitrary algebraic
and relational structures based on various models, notably the finite algorithmic
procedures of Harvey Friedman, which was a generalised register machine approach.

It took until Spring 1979 to see the natural connections between these subjects and ask
some obvious questions.

JIZ was pursuing various research topics in logic, including work on phenomenology and
logic with Robert Tragesser. He was also working closely with Jaco on the later stages of
his book. Through reading the book closely, he became interested in the expressiveness
of the assertion language in the proofs of completeness. He was working out a self-
contained proof of the expressiveness of first order logic for pre- and post-conditions for
computation by recursive procedures on the natural numbers, to be incorporated in the
book as an appendix. This was quite an exercise and gave him the opportunity to dig into
the technicalities of the relevant semantical and logical issues. It demanded more
frequent wanderings up and down the corridor than many of the problems we have
worked on since.

JVT was already working on generalising computability theory. At Oslo he had written
some papers on computability theory on algebraic structures. Theorems in Moldestad,
Stoltenberg-Hansen and Tucker [1980a,1980b] bridged the gap between abstract register
machine computations (a la Harvey Friedman and John C Shepherdson) and (i) axiomatic
computation theories and (ii) fixed point methods in higher type recursion. The results
had been included in the monograph Fenstad [1980]. Recently, in Fenstad [2002], Jens
Erik has reflected on that period of generalised recursion theory, both historically, and in
the light of some of our more recent results.

JVT had been introduced to Harvey Friedman’s paper in his first year of graduate studies
at Bristol, in a course given by John Shepherdson in January 1974. However, his PhD
had been on computable universal algebras, groups and fields under John P Cleave.
Computable algebras of various kinds had been studied by M O Rabin and A I Mal’cev.
JVT had started to work on John Cleave’s ideas for a method of analysing the
computability of uncountable topological algebras (specifically the classical matrix
groups) using generalised enumerations from Baire space, but had found the Mal’cev
theory for countable algebras under-developed. Cleave did not publish his approach and,
quite independently, Klaus Weihrauch later created an extraordinary theory of
computation for topological spaces using enumerations from Baire and Cantor space
starting in Kreitz and Weihrauch [1985] and recently described in Weihrauch [2000].

In the first half of 1979 he was finishing a paper with Viggo Stoltenberg-Hansen on the
undecidability of the roots of unity problem in computable fields. He was also actively
learning about programming language theory and semantics. In the lunchtime meetings
with Paul and Peter the subject of complexity theory often featured. JVT and Peter started
to work together on complexity results for abstract models of computation on universal
algebras (Asveld and Tucker [1982]).

In February 1979, JVT began regular meetings with Jan Bergstra. They had become
friends through Jan’s visits to Oslo, when he was active in higher type recursion theory.
Discussions were focussed on algebraic specification methods for data types and logical
foundations for program specification and correctness. As their research developed, the
pattern was established of JVT visiting Leiden or Utrecht, usually on a Tuesday, to
discuss a variety of subjects, and, especially, the week’s progress on their investigations.

Algebraic methods for the specification of data types had been developed in the
programming methodology literature by Barbara Liskov and Stephen Zilles, and by John
Guttag. Extensive case studies showed that there were many ways to use many sorted
equations, conditional equations, and other formulae to axiomatise the operators of data
types and this raised many questions as to which were best. Not surprisingly, some
methods were expressed through examples only. The algebraic specification techniques
were first analysed mathematically by the ADJ Group, as part of their general research
programme on initial algebra semantics (Goguen, Thatcher, Wagner and Wright [1977]).
The study of the scope and limits of the methods led to a deep collaboration between JVT
and Jan that uncovered intimate connections between computability, specification and
verification. The first of many MC Reports they devoted to these subjects appeared in
1979 (see Bergstra and Tucker [1979 a, b, c]. The theory of data types had taken root in
The Netherlands.

The algebraic approach to data types was also discussed at length in the office at the MC.
It gave a new perspective to the search for a general theory of computable functions on
algebras and raised the question what is the theory of specification and correctness on
data types other than the natural numbers. JIZ began to actively study abstract
computability theory. He wondered if the whole of Jaco’s approach could be generalised
to arbitrary structures. He had met many sorted structures through the interest of his
supervisor, Sol Feferman, at Stanford. The many sortedness was exactly right for
modelling data. The computability theory showed that the assertion languages could no
longer be first order because they could not express even simple computational
conditions, but that a weak second order assertion language (allowing finite sequences or
arrays) would be adequate. JIZ suggested we write an MC Tract to see how the theory
looked. He also suggested we might look at errors. We agreed and proposed the idea to
Jaco who was enthusiastic.

We planned out our monograph keeping closely to the pattern of the first five chapters of
Jaco’s book. JIZ would write the three correctness chapters and JVT would write the
introduction to the project and a final chapter on computability on many sorted algebras.
It was an extension of Jaco’s approach, designed to allow applications to any data.

At the end of September 1979, JIZ left The Netherlands for Bar Ilan University in Israel.
Our plans were clear and it was agreed that he would make return visits to Amsterdam to
work on the end of one book (Jaco’s) and the start of another (our own). JVT was left
working on a paper on generalised computability theory and its applications to abstract
algebra. It was the published version of his invited lecture at the Association for

Symbolic Logic Summer Meeting at Leeds in 1979. This was the last of the register
machine work that he had started in Oslo (Tucker [1980]).

Ralph Johan Back (Helsinki) took JIZ’s desk and new conversations started up, this time
on programming methodology, refinement and logic. JVT learnt a great deal of
contemporary thinking on software construction from Ralph. Whist Ralph introduced
him to several research problems JVT was too slow a pupil to write to a joint paper.

The following year, 1980, saw the move of the MC from the Tweede Boerhaavestraat to
the Kruislaan. At lunch this was longed for by Ralph (used to the quality and modernity
of Scandinavian interiors) and bemoaned by Paul and JVT (used to the MC). One
lunchtime we upped and went to see the new building before its completion to prove our
respective points. However the debate descended into speculations on how to get there,
where the sandwich shops were, and where our offices might be. When the MC moved
we still managed to get there each day, there was a canteen, and Ralph and JVT were in
the same office.

That summer brought the seventh International Colloquium on Automata, Languages and
Programming (ICALP) to Noordwijkerhout, organised by Jaco and others. With it came
visitors to Amsterdam, including Jim Thatcher who had been working out the
mathematical theory of data types with Joe Goguen, Eric Wagner and Jesse B Wright in
one fine paper after another for several years. On September 1, came the retirement of
Aad van Wijngaarden, and changes in the organisation of the MC. Ralph returned to
Helsinki but the conversations continued, JVT visiting him in Helsinki in 1981.
Subsequently, Ralph has influenced the development of formal methods for software
through his deep study of refinement, starting in his thesis and MC Tract, Back [1980],
and most recently described in his book, Back and von Wright [1998]. He has also had a
strong effect on Finnish computer science, of course.

How was our Program correctness over abstract data types with error-state semantics
written? Slowly. We received a lot of patient encouragement and support from Jaco over
the nine years it took to publish the book in 1988. We were occupied with other research
problems: for example, JIZ and Jaco were working on concurrent processes (see below),
and JVT and Jan Bergstra continued their work on data type specifications and Hoare
logic. There were disruptions. In January 1981, JVT returned for a brief period to Bristol
University in the UK. In October 1981 he settled at Leeds University. After three years,
JIZ moved from Bar Ilan to SUNY at Buffalo, New York.

However, technology, too, moved on. The IBM typewriters that had produced Jaco’s
book were passing into history. Our book was produced by JIZ using the Ditroff text
processor under UNIX with a QMS Lasergrafix 1200, the first laser printer to be used at
Buffalo’s computer science department, funded by his grant from National Science
Foundation. From that time to this day, we write tt and ff for Booleans, in fond
memory of Jaco’s typewriter notation for tt and ff in his book (using 3B Staedtler pencils,
of course).

3. After Jaco’s Book

When Jaco’s book was finished, there was an obvious interesting question for everyone
in his circle. What was Jaco going to do next? There was a definite sense of
achievement in the completion and appearance of the book in 1980. In it the basic
technical issues of semantic modelling, and its connection with logics for program
verification, were answered clearly, rigorously and in detail. For imperative
programming, the book sorted out technical issues that had been causing problems since
the emergence of semantic modelling and formal verification a decade earlier. This sense
of achievement can also be found in Krzysztof’s survey paper Ten years of Hoare Logic
(Apt [1981]). The basic approach to semantics went something like this:
• design constructs that require semantic models
• design syntax-directed logics for the constructs
• prove soundness and completeness.
If you wanted to do this properly then you had know Jaco’s book.

In terms of research, as the book came to completion, it seemed to us there were some
obvious avenues for further theoretical research on semantics and verification:

1. The mathematical investigation of Hoare logic, since little was known about its proof
theory and model theory. This was taken up in a series of papers in the 1980s at the
hands of a few authors including Ed Clarke, Ernst-Rüdiger Olderog, Jan Bergstra and
JVT.

2. The investigation of proof systems for communication and concurrency. This had
started in earnest was being taken up by many researchers.

3. The extension of Hoare logic with abstract data types, modules, classes and other
encapsulation and architectural ideas, and with errors and exceptions. This was taken
up by several authors including us.

Jaco was primarily interested in denotational semantics, and he abandoned Hoare logic.
He had followed the research on concurrency and was intrigued by the abstract process
approach of Robin Milner, newly expounded in Milner [1980]. The process analysis of
concurrency was exciting. Uninterpreted actions could be manipulated by operations and
defined by fixed point formulae, but the method of making a calculus such as CCS
appealed less. Jaco had also been taken with the work of Maurice Nivat on infinite trees
and strings (Nivat [1979]). It contained a beautiful metric space treatment of the idea of
specifying a set of strings or trees, and was related to Nivat and Arnold’s metric space
theory of nondeterministic programs. Jaco had already considered trees in De Bakker
[1977]. Trees and metric spaces were central to Ruurd Kuiper’s first work on semantics
at the MC, written under Jaco’s guidance (Kuiper [1981]).

The idea that a process is “like” an infinite tree was a starting point for applying metric
techniques to the specification and semantics of concurrent systems. This seemed a new

and promising project: it combined simple abstract notions of process with established
mathematical tools. Surely it would lead to a denotational semantics for concurrency and
new insights into concurrent processes? It certainly did.

For many years after JIZ had left Amsterdam he visited the Netherlands every summer to
work with Jaco at the CWI. Sometimes JIZ and JVT would meet at the CWI; sometimes
he would travel on to Leeds. In addition, Jaco and JVT were guests of JIZ at Bar Ilan
University and of the Weizmann Institute in Israel in the summer of 1981, following the
eighth ICALP meeting at Akko that year. It was a relaxed, pleasant and productive visit.
We continued working on our book, and Jaco and JIZ developed the ideas leading to the
paper De Bakker and Zucker [1982], which helped to lay the foundation for the broad
subject of concurrent process theory.

On subsequent visits by JIZ to the MC and CWI, this subject of topological process
theory was developed much further by Jaco, JIZ and other colleagues, including Joost
Kok, John-Jules Meyer, Ernst-Rüdiger Olderog, and Jan Rutten, resulting in the papers
De Bakker and Zucker [1983 a,b], De Bakker, Meyer and Zucker [1983], De Bakker,
Kok, Meyer, Olderog and Zucker [1985], De Bakker, Meyer, Olderog and Zucker [1988],
and Rutten and Zucker [1992].

The origins of this subject is discussed van Breugel [1999] and its effects recorded in the
books De Bakker and Rutten [1992] and De Bakker and De Vink [1996].

4. Concurrency, Domain Representability and Computability
on Topological Data Types

The metric space theory of processes was influential in the development of a popular
concrete approach to the study of computability on topological algebras, that of using
domains to represent the algebras.

Jan Bergstra and Jan Willem Klop started working on process algebra after a lecture by
Jaco in Utrecht in June 1982. They tackled the open problem he posed of solving
unguarded recursion equations in the topological model of De Bakker and Zucker
[1982]. Their solution was this: in the case of a finite set of atomic actions, they created
the axiomatic system Process Algebra PA for processes. The theory PA had an initial
algebra Aw and a system of projections An that modelled the execution of processes for n
steps, for n = 1, 2,… . These projections were also models of PA and the algebras formed
an inverse sequence with inverse or projective limit A∞, which was again a model of PA.
They proved that all recursion equations have solutions in all the An and so in the A∞.
Since the A∞ can be embedded in the De Bakker-Zucker model of processes, the problem
was solved.

The theory PA was extended to the axiomatic system called Algebra of Communicating
Processes ACP, and it was soon recognised that these axiomatisations were independent

and important new approaches to the theory of concurrent processes. Early on, in 1983,
Jan Bergstra made one of his regular visits to JVT on holiday at his home in Ogmore-by-
Sea in Wales, and he explained the theory in some detail. It was immediately exciting:
mathematically, the theory combined the abstract conception of processes, the beautiful
algebraic axioms of PA and ACP which were algebraic specifications of processes, and
applications of mathematical techniques from the huge range available in universal
algebra and topology. It was clear there could be many operators and axiom systems.
Therefore, it seemed to be important that the subject follow general algebraic principles,
i.e., it should use the basics of universal algebra, equational axiomatisations,
homomorphisms, etc. This first encounter led to a few joint papers, including Bergstra
and Tucker [1985] which attempted to give a clean account of the ideas in a strict
algebraic style; added axioms (e.g., standard concurrency); proved a Milner expansion
theorem for ACP; and attempted to use homomorphisms to model top-down design.
JVT was sold on process algebra in one afternoon, between lunch and high tea, and has
followed with great pleasure the development of the subject ever since.

In 1983, JVT was also continuing his longstanding collaboration with Viggo Stoltenberg-
Hansen (now in Uppsala) on computable algebra. They wanted to develop a smooth and
general treatment of computability in topological algebras, especially rings and fields,
about which they knew a lot (Stoltenberg-Hansen and Tucker [1999a]). This problem had
been encountered by JVT when working with John Cleave in 1974. Unknown to them,
Klaus Weihrauch was also seeking a general method of analysing computations. In fact,
Klaus considered a connection between metrics and partially ordered spaces in
Weihrauch [1981], but abandoned this direction in favour of his theory of Baire space
enumerations.

At their next meeting in Leeds, Viggo explained how he had been attracted to the study
of local rings and their completions. There a local ring R with a maximal ideal M is used
to create a inverse sequence of rings R/Mn and an inverse limit R∞. This inverse limit was
an uncountable ultrametric space and, in particular, a completion. What can be computed
in local rings and their completions? We thought about computing with Cauchy
sequences of rationals and with the Baire space of all functions on the natural numbers.

Viggo had also taken the brave step (for a mathematician) of offering a course on domain
theory at Uppsala. There was a lot to learn about the connections between order and
topology, fixed-point theory, and, of course, effective domains. But, by taking a select
path into the subject, it did appear to be a generalisation of the key elements of higher
type recursion theory.

On visits like this Viggo and JVT simply talked most of the time. Conversations about
local rings and domains were interleaved many times each day and began to converge.
They worked out how to build representations of complete local rings using total
elements in algebraic domains. This allowed them to apply the theory of effective
domains to analyse computability in the ring automatically.

At the same time JVT was keen to introduce a third new subject to their repertoire. He
explained the algebraic theory of processes based on ACP with its use of equations,
initial models and inverse limit model, which was another ultrametric space and
completion. They saw that the methods for representing the completion of the local rings
also applied to the inverse limit model of ACP and to many other sorts of completions,
including infinite trees.

They wrote out the domain representation method for topological universal algebras, and
formulated the general approach of analysing the effective content of topological
algebras. They formulated the general problem of finding (computable) solutions of
equations in topological algebras, inspired by the idea of giving equational specifications
of (computable) processes. How were the domain theoretic and metric space based
methods related for topological algebras in general, and for process algebras in
particular?

Viggo and JVT embarked on a research programme to represent different sorts of
topological algebras using domains. The theoretical starting point was this:

inverse limits of algebras were ultrametric algebras, and conversely,
and our domain representation methods worked beautifully for ultrametric algebras. In
fact, the typical situation was exactly like that of the inverse limit model of processes:
there was an initial algebra and a family of congruences ≡n that led to a countably indexed
inverse limit.

Viggo and JVT ultimately wrote up the work on the local rings and the general approach
in Stoltenberg-Hansen and Tucker [1985] and circulated it widely as the first preprint of
the newly launched Centre for Theoretical Computer Science at Leeds University. It was
later published as Stoltenberg-Hansen and Tucker [1988]. They also wrote up their
investigations in papers on ultrametric universal algebras and the solution of finite and
infinite systems of equations using domains and fixed points (Stoltenberg-Hansen and
Tucker [1991,1993]). The idea was to show that
(i) there was an equivalence of approaches to concurrency based on process algebras;

process calculi; metric space methods and, indeed, domain theory; and
(ii) these equivalences could be derived from the principles of universal algebra.
They gave applications to process algebra and infinite synchronous concurrent
algorithms. Domain representability, and results such as the fact that the Banach
Contraction Mapping Theorem was derivable from the Least Fixed Point Theorem via a
domain representation, were included in Viggo’s book on domains (Stoltenberg-Hansen,
Lindstrom and Griffor [1994]).

Now, although the real numbers were invaluable in exploring the abstract idea of
completion they do not themselves an inverse limit. Viggo and JVT broadened the
general domain representation method and showed that the functions on the real numbers
that were effective in a natural domain representation of the real numbers were the
computable functions of Grzegorczyk and Lacombe defined in the 1950s (see below).
This result was published later in Stoltenberg-Hansen and Tucker [1995].

The domain representation method for topological universal algebras is now widely
known and used when looking at computation in analysis and its applications (see Edelat
[1997]). It is interesting to note the power of the oral tradition in the origins of this
domain approach to computable topological data types. The general forms of domain
representations for universal algebras were revealed through conversations on
concurrency theories between Jaco and JIZ, Jan and Jan Willem, Jan and JVT, and JVT
and Viggo.

5. A Taste of our Current Research

Notions of computability on the natural numbers and strings have long been known to
agree. Since 1936, many models of computation have been developed and proved to be
equivalent. The theory of computable functions on natural numbers is stable. It is largely
independent of data representations (e.g., computability on binary numbers is equivalent
to that on decimal numbers) and programming constructs. It possesses many elegant and
efficient models with which to work on applications. And, thanks to the theory of the
arithmetic hierarchy, the connection between computation and specification in first order
logic is clear and beautiful. It is truly worthy of its name Classical Computability
Theory.

Our research has sought to analyse the concepts and mathematical ideas in classical
computability by examining them in the more general setting of an arbitrary many sorted
algebra and applying them in particular cases, such as algebras of real numbers.
Currently, computing with topological algebras is our main occupation. Here is a taste
emphasising the real numbers.

5.1 Computability on topological algebras
There are many approaches to defining computability on topological and metric algebras
that are technically different and have different agendas. Until recently, there was no sign
of a stable theory, only a rather confusing range things to do and ways to do them. The
rather basic question,

What are the computable functions on topological algebras?
did not have a general, widely agreed and understood answer, even for the real numbers;
an elegant solution to this fundamental problem seemed even further away.

The computability theories in the literature may be divided usefully into two kinds:

1. abstract computability theories, in which computations are independent of data
representations; and

2. concrete computability theories, in which computations depend on some chosen data
representations.

Abstract computation theories are based on “programs” that use the basic operations and
tests of the algebra only. They may have different control or specification constructs,
such as goto, recursion or parallelism. The programming languages that are used in
semantical studies, like Jaco’s book, are all examples of abstract models of computation.
One simply has to ask the question: What does this language compute?

As we showed in Chapter 4 of Tucker and Zucker [1988], many abstract models of
computation of different kinds have been defined and shown to be equivalent.
Subsequently, we analysed several more and found a family of abstract models better
suited to specification rather than computation. Thus, the theory of abstract computation
is quite stable. For a recent comprehensive introduction to abstract computation,
including a new survey of its origins in the 1950s and principal literature, see our Tucker
and Zucker [2000]. There we used while-array programs over these algebras, the
primary mathematical model of imperative programming. Abstract computation theories
are designed to compute on all many sorted algebras and so can be used to develop
computability theories for particular algebras such as rings and fields of real numbers
(see, e.g., Blum et al [1998]) and topological and metric algebras (Tucker and Zucker
[1999a]).

Concrete computation theories are designed to analyse computability in terms of classical
recursion theory on natural numbers via chosen representations of data and spaces. Some
general approaches are:

Effective metric spaces Moschovakis [1964];
Computable sequence structures for Banach spaces Pour El and Richards [1989],
Type 2 enumerations Weihrauch [2000],
Algebraic domain representations Stoltenberg-Hansen and Tucker

[1988, 1995],
Continuous domain representations Edalat [1995],
Numbered spaces Spreen [1998].

The equivalence of most of these concrete approaches is proved for certain topological
algebras in Stoltenberg-Hansen and Tucker [1999b]. Whilst the study of concrete
computability is not so well understood, it seems to be stable on the real numbers. The
general concrete models have all been shown to define the Grzegorczyk-Lacombe (GL)
computable functions on the real numbers, first formulated in the 1950s and the basis of
early studies in computable analysis.

It is the connection between the abstract and concrete theories that has been a problem.
Concrete models can compute a lot more or a lot less, depending on the selection of the
algebraic operations. Only recently, it has been shown that, surprisingly, notions of

(i) continuity and partiality,
(ii) limit processes and approximation, and
(iii) nondeterminism and multivaluedness,

are necessary to bridge the gap between them for general classes of metric algebras: see
Brattka [1996, 1999] and Tucker and Zucker [1999, 200?]). Let us amplify these points
in turn.

Ad (i): Abstract computability theories are dependent entirely on the operations and tests
of the algebra. Since the choice of operations is unlimited, it is possible to choose
operations that are not concretely computable. A typical mistake is to allow tests like

= or <
as total functions in the algebra. These operations are discontinuous. It follows from
conceptual analysis and different versions of Ceitin’s Theorem that concrete computable
functions are always continuous on the real numbers. Hence, such basic tests can only be
introduced as partial operations.

Ad (ii): Abstract models compute outputs that are contained in the subalgebra generated
by the input. However, in a metric algebra they can computably approximate data outside
this subalgebra. For example, on the field of real numbers, ÷x cannot be computable by
while-array programs because ÷x is not in the subfield <2> = Q, the rationals. It is,
however, computably approximable.

Ad (iii): Concrete models can compute single-valued selection functions that are
continuous in the topology of the representations of the real numbers, but not in the
topology of the real numbers themselves. Abstract models cannot compute such single-
valued functions.

In our Tucker and Zucker [200?a] we extended the language of while-array programs
with the non-deterministic assignment statement

x := choose z: nat | b(z, y).

where b is a Boolean-valued procedure. This produces countable nondeterministic
choice. This construct escaped Jaco’s book but was caught in Apt and Olderog [1991].
We first encountered the idea in our old office in the MC, where Ralph Back was looking
at nondeterministic assignments, in the early days of his extensive theory of program
refinement (Back [1980a, 1980b, 1998]).

Let us describe some recent extensions to our recent work in this area Tucker and Zucker
[1999, 2002, 200?a]

In computing with the real numbers we often use the assumption of global uniform
continuity, as it simplifies considerably technical definitions of the computability of
functions on spaces. In metric algebras, compactness implies that continuous functions
are uniformly continuous. We weaken this assumption by considering the broader class
of functions that are uniformly continuous in pieces, by localising the uniformities,
necessary for computability, using families of open sets

(U, V0, V1, V2 …) such that U = » Vi

called open exhaustions This leads to the notion of effective local uniform continuity.
Exhaustions are an obvious and standard way of extending computability notions via
localisation. The resulting theorems have applications to the study of functions on all of
n-space RnÆRm, rather than on a compact cube [a, b]n ÆRm.

We extend our various general notions to the localised notion using exhaustions. We can
show that for connected exhaustions, on certain algebras, while approximation, while-
array approximation, and polynomial approximation are equivalent. On choosing a
particular total algebra of real numbers Areal, these three notions can be shown to
coincide with standard GL-computability on R (c.f. Tucker and Zucker [1999]). Next we
extend our main bridging theorem in Tucker and Zucker [200?a] to the localised case.
We can show that for effectively locally uniformly continuous functions, and a wide class
of metric algebras, approximation by while-array programs with countable choice is
equivalent to a simple general notion of effectively trackable in a concrete Moschovakis-
like computational model. Combining these results in the special case of real numbers
we obtain:

Theorem Let f: RnÆRm be a function that is effectively locally uniformly continuous on
an exhaustion. Then the following are equivalent:
1. f is GL computable on R.
2. f is “effectively trackable” on R.
3. f is locally polynomial approximable on Areal .
4. f is locally while array approximable on Areal .
5. f is locally while array with countable choice approximable on a partial algebra Breal

This, together with other equivalences between concrete models and GL-computability,
gives us a stable foundation for the idea of a locally computable function based on
exhaustions. Next we consider the specification of these functions.

5.2 Specifications
In the theory of data, abstract data types are modelled by many sorted algebras and
homomorphisms, and are specified axiomatically by equations and conditional equations.
Most of the theory has been developed for data types that are discrete and countable,
since they are the data types for which exact digital computation is possible. Jan Bergstra
and JVT began a investigation that revealed surprising equivalences between
computability, algebraic specification methods, and term rewriting; see, for instance
Bergstra and Tucker [1983,1987,1995], Meseguer, Moss and Goguen [1992],
Khoussainov [1998]; and surveys such as Meseguer and Goguen [1985] and Stoltenberg-
Hansen and Tucker [1995].

Now, data types containing continuous data can be modelled by topological many sorted
algebras and continuous homomorphisms, or - to take a more restricted class, closer to
examples - by many sorted topological algebras that are also metric spaces. There are
two questions we need to answer:

What methods exist to axiomatically specify functions on topological algebras?

and

Can all computable functions be specified?

The theory of topological data types is in its infancy. As we have seen there are many
approaches to computability theory on general and specific spaces, and few approaches to
specification theory. In Tucker and Zucker [2002] we have studied these questions.

Algebraic specification methods characterise functions as the solutions of systems of
algebraic formulae that are unique in some sense. By algebraic formulae, we mean
equations

t(X) = t’(X)
or conditional equations

t1(X) = t1’(X) Ÿ ... Ÿ tk(X) = t’k(X) Æ t(X) = t’(X),
or other formulae, based on these, and enjoying some algebraic properties or customised
to the particular algebraic context. For example, in working in metric algebras, we have
as standard the sort of real numbers, so we will adapt the formulae to include (i)
inequalities between reals and (ii) localisation via exhaustions. Taking (i) and (ii)
together, we form specifications using localised conditional equations and inequalities.
We can then prove that algebraic specifications can specify all computable functions on
metric algebras. We say that the algebraic specification (S+ , C(n)) is a universal
specification if as n varies over the natural numbers the specification defines all the
computably approximable functions over all metric S algebras. In the case of the real
numbers we can derive:

Theorem There is a finite universal specification (S+ , C(n)), consisting of conditional
equations and inequalities over S+, that defines all the locally GL computable functions
on R.

From this it is easy to prove technical results with the informal meaning:

Theorem If a deterministic finite dimensional dynamical system has a model that can be
simulated to any degree of accuracy by an algorithm then there exists an algebraic
specification that uniquely defines that algorithmic model. Indeed, for each n, there is
an algebraic specification that uniformly captures all algorithmic models with n-
dimensional state spaces.

These results will appear in Tucker and Zucker [200?b].

6. Conclusion

Semantics, Verification and Process are some of the Big Ideas to emerge in Computer
Science. Jaco has played an important pioneering role in the development of the modern

field of Semantics of Computation from its earliest days, and has made big contributions
to fields of Verification and Processes. His work will be studied with profit in the years
to come.

Data is another Big Idea. The idea of working out a computability theory for data in
general, and applying it, seemed a basic task in 1979 and is more so even now. Jaco’s
ideas and techniques in semantics shaped our joint research and, of course, our research
with others. Topological data types are fundamental in modelling physical systems and
are the characteristic data types of analogue processing. What is the relationship between
computations with continuous data and with discrete data? The semantical theory is
developing, but little is known.

Nor are the books over! We intend to write a comprehensive graduate textbook and
monograph on abstract computability theory. Some of basic ideas and approaches of
both Jaco’s and our book have found their way in to the undergraduate textbook Tucker
and Stephenson [200?].

The Netherlands is one of the most important countries in the world for research in
Computer Science. Amsterdam is the most important city in the world for the theoretical
research on programming and specification. Jaco is the primary architect of this city’s
outstanding reputation though his research, leadership and organisation at the MC and
CWI for the past 38 years.

In our own case we worked with Jaco in our formative years as computer scientists and
met with him many times in the years that followed. Through regular visits to
Amsterdam and the hospitality of Jaco and Angeline, at home and on excursions, we have
become firm and loyal friends. We owe him a great deal. There are so many scientists
who owe the key steps in their progress to Jaco.

7. References

K R Apt, N Francez, W-P de Roever, A proof system for communicating sequential
processes, ACM Transactions on Programming Languages and Systems, 2 (1980) 359-
385.

K R Apt and E-R Olderog, Verification of sequential and concurrent programs, Springer
Verlag, New York, 1991.

P R J Asveld and J V Tucker, Complexity theory and the operational structure of
algebraic programming systems, Acta Informatica, 17 (1982), 451-476.

C A R Hoare, An axiomatic basis for computer programming, Communications of the
ACM, 12 (1969), 576-580, 583.

R J R Back, Semantics of unbounded nondeterminism, in J W de Bakker and J van
Leeuwen (eds.) Automata, Languages and Programming, Seventh Colloquium,
Noordwijkerhout, 1980, Springer Lecture Notes in Computer Science 81, Springer
Verlag, Berlin, 1980, 51–63. a

R J R Back, Correctness Preserving Program Refinements: Proof Theory and
Applications, Mathematical Centre Tracts 131, Mathematical Centre, Amsterdam, 1980.
b

R J R Back and J von Wright, Refinement Calculus: A Systematic Introduction, Graduate
Texts in Computer Science, Springer Verlag, 1998.

J W de Bakker, Axiomatics of simple assignment statements, Report 94, Mathematish
Centrum, Amsterdam, 1968.

J W de Bakker, Recursive Procedures, Tract 24, Mathematish Centrum, Amsterdam,
1973.

J W de Bakker, Semantics of infinite processes using generalised trees, in J Gruska (ed.),
Mathematical Foundations of Computer Science, 6th Colloquium, Lecture Notes in
Computer Science, 53, Springer, Berlin, 1977, 240-252.

J W de Bakker, The Mathematical Theory of Program Correctness, Prentice Hall
International, London,1980.

J W de Bakker and J J M M Rutten, Ten years of concurrency semantics, World
Scientific, Singapore Amsterdam, 1992.

J W de Bakker and E de Vink, Control flow semantics, MIT Press, 1996.

J W de Bakker and J I Zucker, Processes and the denotational semantics of concurrency,
Information and Control, 54 (1982), 70-120. Reprinted, with errata, in De Bakker and
Rutten [1992], 28-80.

J W de Bakker and J I Zucker, Compactness in semantics for merge and fair merge, in E
Clarke and D Kozen (ed.), Logics of Programs. Workshop, Carnegie-Mellon University,
Pittsburgh, PA, June 1983, Lecture Notes in Computer Science 164, Springer Verlag,
1983, 18-33. a

J W de Bakker and J I Zucker, Processes and a fair semantics for the ADA rendez-vous,
in J Diaz (ed.), Automata, Languages and Programming: Proceedings of the 10th
International Colloquium on Logic, Automata and Programming, Barcelona, Spain, July
1983, Lecture Notes in Computer Science 154, 1983, Springer Verlag. b

J W de Bakker, J-J Ch Meyer and J I Zucker, On infinite computations in denotational
semantics, Theoretical Computer Science, 26 (1983), 53-82.

J W de Bakker, J N Kok, J J Ch Meyer, E R Olderog and J I Zucker, Contrasting themes
in the semantics of imperative concurrency, in J W de Bakker et al. (eds.) Current Trends
in Concurrency (Overviews and Tutorials): Proceedings of the ESPRIT/LPC Advanced
School in Concurrency, Noordwijkerhout, The Netherlands, June 1985, Lecture Notes in
Computer Science 224, Springer Verlag, (1985), 51-121.

J W de Bakker, J-J Ch Meyer, E R Olderog and J I Zucker, Transition systems, metric
spaces, and ready sets in the semantics of uniform concurrency, Journal of Computer and
System Sciences, 54 (1988), 158-224.

J A Bergstra, J Tiuryn and J V Tucker, Correctness theories and program equivalence,
Stichting Mathematisch Centrum. Informatica, IW 119/79, Amsterdam 1979, 31 pp.

J A Bergstra and J V Tucker, On the adequacy of finite equational methods for data type
specification, ACM-SIGPLAN Notices, 14.11 (1979) 13-18.

J A Bergstra and J V Tucker, Algebraic specifications of computable and semi-
computable data structures, Stichting Mathematisch Centrum Informatica, IW 115/79,
Amsterdam 1979, 24pp.

J A Bergstra and J V Tucker, A characterisation of computable data types by means of
a finite, equational specification method, Stichting Mathematisch Centrum Informatica,
IW 124/79, Amsterdam, 1979, 23 p.

J A Bergstra and J V Tucker, A natural data type with a finite equational final semantics
specification but no effective equational initial semantics specification, Bulletin of the
European Association for Theoretical Computer Science, 11 (1980) 23-33.

J A Bergstra and J V Tucker, A characterisation of computable data types by means of a
finite equational specification method, in J W de Bakker and J van Leeuwen (eds.)
Automata, Languages and Programming, Seventh Colloquium, Noordwijkerhout, 1980,
Springer Lecture Notes in Computer Science 81, Springer Verlag, Berlin, 1980, pp. 76-
90.

J A Bergstra and J V Tucker, The completeness of the algebraic specification methods for
data types, Information and Control, 54 (1982) 186-200.

J A Bergstra and J V Tucker, Initial and final algebra semantics for data type
specifications: two characterisation theorems, SIAM Journal on Computing, 12 (1983)
366-387.

J A Bergstra and J V Tucker, Top-down design and the algebra of communicating
processes, Science of Computer Programming, 5 (1985) 171-199.

J A Bergstra and J V Tucker, Algebraic specifications of computable and semi-
computable data types, Theoretical Computer Science, 50 (1987) 137-181.

J A Bergstra and J V Tucker, Equational specifications, complete term rewriting systems,
and computable and semicomputable algebras, Journal of ACM, 42 (1995) 1194-1230.

V Brattka, Recursive characterisation of computable real-valued functions and relations,
Theoretical Computer Science, 162 (1996), 45-77.

V Brattka, Recursive and comptable operations over topological structures, PhD thesis,
Fachbereich Informatik, FernUniversität Hagen, 1999.

J Blanck, V Stoltenberg-Hansen and J V Tucker, Streams, stream transformers and
domain representations, in B Möller and J V Tucker (eds.), Prospects for hardware
foundations, Springer Lecture Notes in Computer Science, Vol 1546, 1998, 27-68.

J Blanck, V Stoltenberg-Hansen and J V Tucker, Domain representations of partial
functions, with applications to spatial objects and constructive volume geometry,
Theoretical Computer Science, 284 (2002), 207-240.

L Blum, F Cucker, M Shub and S Smale, Complexity and real computation, Springer
Verlag, New York, 1998.

F van Breugel, De Bakker-Zucker Processes Revisited (Dedicated to Jaco de Bakker on
the occasion of his 60th birthday.) Report CS-1999-05, York University, Toronto,
November 1999. To appear in Information and Computation.

A Edalat, Domains for computation in mathematics, physics and exact real arithmetic,
Bulletin of Symbolic Logic, 3 (1997) 401-452.

J E Fenstad, Generalised recursion theory, Springer Verlag, Berlin, 1980.

J E Fenstad, Computability theory: structure or algorithms, in W Sieg, R Somer, C
Talcott (eds.), Reflections on the foundations of mathematics: Essays in honour of
Solomon Feferman, Lecture Notes in Logic, volume 15, Association for Symbolic Logic,
2002, 188-213.

C B Jones The Search for Tractable Ways of Reasoning about Programs, Manchester
University, UMCS-92-4-4, 1994.

R Kuiper, An operational semantics for bounded nondeterminism equivalent to a
denotational one, J W de Bakker and J C Van Vliet (eds.), Algorithmic languages, North-
Holland, 1981, 373-398.

R W Floyd, Assigning meanings to programs, Proceedings AMS Symposium in Applied
Mathematics 19 (1967) 19-31.

N Francez, Program verification, Addison Wesley, 1991.

J A Goguen, J W Thatcher, E G Wagner and J B Wright, Initial algebra semantics and
continuous algebras, Journal ACM 24 (1977), 68-95.

B Khoussainov, Randomness, computability, and algebraic specifications, Annals of Pure
and Applied Logic, 91 (1998) 1-15.

C Kreitz and K Weihrauch, Theory of representations, Theoretical Computer Science 38
(1985) 35-53.

J Moldestad, V Stoltenberg-Hansen and J V Tucker, Finite algorithmic procedures and
inductive definability, Mathematica Scandinavica, 46 (1980) 62-76. a

J Moldestad, V Stoltenberg-Hansen and J V Tucker, Finite algorithmic procedures and
computation theories, Mathematica Scandinavica, 46 (1980) 77-94. b

K Meinke and J V Tucker, Universal algebra, in S Abramsky, D Gabbay and T Maibaum
(eds.) Handbook of Logic in Computer Science. Volume I: Mathematical Structures,
Oxford University Press, 1992, pp.189-411.

J Meseguer and J A Goguen, Initiality, induction and computability, in M Nivat and J
Reynolds (eds.), Algebraic methods in semantics, Cambridge University Press, 1985.

J Meseguer, L Moss and J A Goguen, Final algebra, cosemicomputable algebras and
degrees of unsolvability, Theoretical Computer Science, 100 (1992) 267-302.

M Nivat, Infinite words, infinite trees, infinite computations, in J W de Bakker and J van
Leeuwen (ed.), Foundations of Computer Science III, Part 2: Languages, Logic,
Semantics, Mathematical Centre Tracts vol.109, Mathematical Centre, Amsterdam, 1979,
3-52.

J J M M Rutten and J I Zucker, A semantic approach to fairness, Fundamenta
Informaticae, 16(1992), 1-38.

D Spreen, On effective topological spaces, Journal of Symbolic Logic 63 (1998) 185 –
221.

D Spreen, Representations versus numberings: On the relationship of two computability
notions, Theoretical Computer Science 263 (2001), 473-499.

D Spreen and H Schulz, On the equivalence of some approaches to computability on the
real line, in Keimel, K et al., (eds.) Domains and Processes, Proc. 1st Intern. Symp. on
Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 67-101.

W-P de Roever, F de Boer, U Hannemann, J Hooman, Y Lakhnech, M Poel, and J
Zwiers, Concurrency Verification: Introduction to Compositional and Noncompositional
Methods, Cambridge University Press, 2001.

V Stoltenberg-Hansen, I Lindstrom and E R Griffor, Mathematical Theory of Domains,
Cambridge University Press, 1994.

V Stoltenberg-Hansen and J V Tucker, Computing roots of unity in fields, Bulletin of
the London Mathematical Society, 12 (1980) 463-471.

V Stoltenberg-Hansen and J V Tucker, Complete local rings as domains, Journal of
Symbolic Logic, 53 (1988) 603-624.

V Stoltenberg-Hansen and J V Tucker, Algebraic equations and fixed-point equations in
inverse limits, Theoretical Computer Science, 87 (1991) 1-24.

V Stoltenberg-Hansen and J V Tucker, Infinite systems of equations over inverse limits
and infinite synchronous concurrent algorithms in J W de Bakker, G Rozenberg, and W P
de Roever (eds.) Semantics - Foundations and applications, Springer Lecture Notes in
Computer Science 666, Springer Verlag, 1993, 531-562.

V Stoltenberg-Hansen and J V Tucker, Effective algebras, in S Abramsky, D Gabbay
and T Maibaum (eds.) Handbook of Logic in Computer Science. Volume IV: Semantic
Modelling , Oxford University Press, 1995, pp.357-526.

V Stoltenberg-Hansen and J V Tucker, Computable rings and fields, in E Griffor (ed.),
Handbook of Computability Theory, Elsevier, 1999, pp.363-447. a

V Stoltenberg-Hansen and J V Tucker, Concrete models of computation for topological
algebras, Theoretical Computer Science, 219 (1999) 347-378. b

J V Tucker, Computing in algebraic systems, in F R Drake and S S Wainer (eds.)
Recursion Theory, its Generalisations and Applications, London Mathematical Society
Lecture Note Series 45, Cambridge University Press, Cambridge, 1980, pp. 215-235.

J V Tucker, Applications of computability theory over abstract data types, in J W Klop
(ed.) J W de Bakker: 25 Jaar Semantiek. Liber Amicorum, CWI Amsterdam, 1989, 421-
432.

J V Tucker, Theory of computation and specification over abstract data types and its
applications, in F L Bauer (ed.), Proceedings of NATO Summer School 1989 at
Marktoberdorf, in Logic, algebra and computation, Springer, 1991, pp.1-39.

J V Tucker and K Stephenson, Data, syntax and semantics, in preparation.

J V Tucker and J I Zucker, Program correctness over abstract data types with error-
state semantics, CWI Tract 6, North-Holland, Amsterdam, 1988.

J V Tucker and J I Zucker, Horn programs and semicomputable relations on abstract
structures, in G Ausiello, M Dezani-Ciancaglini, S Ronchi Della Rocca (eds.) Automata,
Languages and Programming, Sixteenth Colloquium, Stresa, 1989, Springer Lecture
Notes in Computer Science 372, Springer Verlag, Berlin, 1989, pp.745-760.

J V Tucker and J I Zucker, Toward a general theory of computation and specification
over abstract data types, in S G Akl, F Fiala, and W W Koczkodaj (eds.), Advances in
computation and information, May 1990, Canadian Scholars Press, 1990, pp.101-102.
Also book republished in Springer Lecture Notes in Computer Science 468, Springer
Verlag, Berlin, 1990, 129-133.

J V Tucker and J I Zucker, Examples of semicomputable sets of real and complex
numbers, in J P Myers Jr and M J O'Donnell (eds.), Constructivity in computer science,
Springer Lecture Notes in Computer Science 613, Berlin, pp.179-198.

J V Tucker and J I Zucker, Projections of semicomputable relations on abstract data
types, International J of Foundations of Computer Science 2 (1991) 267-296.

J V Tucker and J I Zucker, Deterministic and nondeterministic computation, and Horn
programs, on abstract data types, Journal of Logic Programming, 13 (1992) 23-55.

J V Tucker and J I Zucker, Theory of computation over stream algebras, and its
applications, in I M Havel and V Koubek (eds.) Mathematical Foundations of Computer
Science 1992, 17th International Symposium, Prague, Springer Lecture Notes in
Computer Science 629, Berlin, 62-80.

J V Tucker and J I Zucker, Provable computable selection functions on abstract
structures, in P Aczel, H Simmons and S S Wainer (eds.) Proof theory, Cambridge
University Press, 1993, 277-306.

J V Tucker and J I Zucker, Computable functions on stream algebras, in H
Schwichtenberg (ed.), Proceedings of NATO Advanced Study Institute, International
Summer School 1993 at Marktoberdorf, in Proof and Computation, Springer, 1994, 341-
382.

J V Tucker and J I Zucker, Computation by while programs on topological partial
algebras, Theoretical Computer Science, 219 (1999) 379-421.

J V Tucker and J I Zucker, Computable functions and semicomputable sets on many
sorted algebras, in S Abramsky, D Gabbay and T Maibaum (eds.) Handbook of Logic for
Computer Science Volume V, Oxford University Press, 2000, 317-523.

J V Tucker and J I Zucker, Infinitary initial algebraic specifications for stream algebras,
in W Sieg, R Somer, C Talcott (eds.), Reflections on the foundations of mathematics:
Essays in honour of Solomon Feferman, Lecture Notes in Logic, volume 15, Association
for Symbolic Logic, 2002, 234-253.

J V Tucker and J I Zucker, Abstract computability and algebraic specification, ACM
Transactions on Computational Logic, 3 (2002) 279-333.

J V Tucker and J I Zucker, Abstract versus concrete models of computation on partial
metric algebras, ACM Transactions on Computational Logic, accepted, 200?a.

J V Tucker and J I Zucker, Computable total functions, algebraic specification and
dynamical systems, submitted, 200?b.

S S Wainer, J V Tucker and J I Zucker, Provably computable functions on abstract data
types, in M Patterson (ed.) Automata, Languages and Programming, Seventeenth
Colloquium, Coventry, 1990, Springer Lecture Notes in Computer Science 443, Springer
Verlag, 1990, pp.660-673.

K W Weihrauch, Computable analysis, Springer Verlag, 2000.

A van Wijngaarden, Numerical analysis as an independent science, BIT 6 (1966), 66-81.

