
Decomposing scheme plans to manage
verification complexity

Phillip James2, Faron Moller2, Hoang Nga Nguyen3, Markus Roggenbach2,
Steve Schneider1, and Helen Treharne1

1 University of Surrey, UK {H.Treharne,S.Schneider}@surrey.ac.uk
2 University of Swansea, Wales {P.D.James,M.Roggenbach}swansea.ac.uk

3 University of Nottingham, UK

Abstract. Several formal methods have been proposed for the speci-
fication and safety verification of railway applications. In order to be
successful they need industrial strength tools to support the animation,
proof, model checking and simulation of such systems. The complex-
ity of railway systems means that capability of the analysis tools have
consistently been improving. In our approach we propose that the com-
plexity of analysis of railway interlocking systems can also be managed
through incremental addition of system detail and decomposition of sys-
tem specifications themselves. We propose a domain specific language
(DSL) which describes the core aspects of a railway interlocking system
and demonstrate how we can identify suitable decompositions in terms of
the DSL. The DSL informs our system engineering approach which uses
a graphical editor to input railway scheme plans, supports the automatic
generation of CSP || B specifications of the plans and uses the ProB tool
for their animation and model checking.

1 Introduction

Fantechi in [3] notes that no one formal method has emerged as the single mature
technology in the railway domain and that the verification of complex railway
signalling systems remains a significant challenge. He argues that model check-
ing is one of most promising automated verification techniques and has been
referred to in the EN50128 guidelines [1]. Fantechi also notes that the EN50128
guidelines recognise the value in modelling and that it can be utilised at different
stages of the development cycle of a railway signalling system. Thus, defining a
formal model of a system together with its safety properties in terms of tempo-
ral logic provides the basis required for using model checking at an early stage
of development. Model checking tools are used to demonstrate that the system
description satisfies the safety properties. Failure to satisfy the properties yields
counter examples which illustrate how the system behaviour evolves to break
these properties. For example there may be a track missing from the control
table of a route or a point is being released incorrectly giving rise to a collision,
derailment or run-through.

2 James et al.

It is well known in the literature that model checking large railway interlock-
ing systems can lead to a state space explosion problem. One potential solution
is the parallelisation of the verification effort to multi-core machines but this is
looking at tackling the problem from the point of view of the supporting tools,
for example [13]. Alternatively, SAT-based bounded model checking of formal
models of a system is regarded as a promising solution to the problem from a
modelling perspective. An example of an approach that utilises constraint solving
via the ProB [9] model checker is the Safecap approach [4]. The Safecap platform
uses logical invariants instead of temporal logic to encode the safety properties of
a railway interlocking system. Failure to satisfy the properties through constraint
solving yields logical inconsistencies which are hard to read and understand but
the authors have overcome this challenge by illustrating them through anima-
tion; this is a significant achievement which makes the approach usable to an
engineer. The models in the Safecap approach are developed through a series of
Event-B refinements and capture a behavioural model of train movement, route
reservation, point locking and route cancellation as well as a formal description
of the scheme topology and control tables and release tables. The models are
automatically generated from a graphical editor to aid productivity.

1.1 CSP||B approach

Our research also focuses on model based design and the definition of interlocking
systems using the formal modelling language of CSP||B [12]. We have similar
verification aims to that of the Safecap approach. However, our approach is to use
ProB to model check CSP||B formal descriptions of interlocking systems against
temporal logic safety properties. This means that we have also experienced the
state space explosion problem. We have documented the limits of the models that
we can verify in [10]. Thus, one of our research challenges is to find a solution
to the state space explosion problem so that our CSP||B approach can viably be
used to model and verify industrial railway interlocking systems; we elaborate
on this in Section 1.2.

There are two main motivations for using CSP||B. Firstly, we want to define
models that are readable by engineers and which reflect the information flow in
railways. The following information flow is clearly separated in our models: the
controller sending a request message to the interlocking to which the interlocking
responds; the interlocking sends signalling information to the trains; and the
trains inform the interlocking about their movements. The interlocking serves
as the systems clock: messages can be exchanged once per cycle. We also want
to decouple the detail of the topology of the track plan, control tables and
release tables from the information flow since these details represent the state
information of a railway system. Using the complementary notations of CSP and
B facilitated this dual view, helping to create models made up of components
that individually focused on information flow and logical aspects. Secondly, we
wanted to use modelling languages that will also allow us to naturally extend our
reasoning beyond that of safety properties. Since CSP [11] is a process algebra
that has a timed extension (Timed CSP) we have been using this extended

Decomposing scheme plans to manage verification complexity 3

notation to reason about capacity. Our initial capacity analysis results have also
been achieved as part of the EPSRC Safecap project [5].

1.2 Modelling and Verification challenge

In our previous work we identified a decomposition approach which enables us to
split up problems at the level of the application domain prior to formal modelling
and verification using CSP||B [6]. The novelty of this decomposition is that it
is defined in terms of a domain specific language (DSL) description. Hence, it
is independent of CSP||B and has the potential for other modelling techniques
to adopt it. Our decomposition technique, referred to as “covering”, proves that
the safety of several decomposed scheme plans implies the safety of the original
scheme plan. Thus in [6] we demonstrated that CSP||B formal models of scheme
plans which were previously not verifiable now are thanks to decomposition.

Our previous work on defining a DSL made several simplifying modelling
assumptions that we relax here: we did not deal with crossings and were limited
to track circuits and points that were uni-directional. Thus, in this paper we
1) summarise the current extensions to the DSL, 2) highlight one aspect of
the resulting formal models when crossings are introduced and 3) outline the
applicability of the decomposition technique in the bi-directional setting. Thus
we are able to provide a rigorous technique that captures the main artifacts of
a railway interlocking system.

The additional benefit of defining a DSL is that we can build graphical tools
from the DSL and use them to generate the formal models automatically. Hence,
we can repeatably generate CSP‖B formal models using our OnTrack model
driven engineering tool [8].

The remainder of the paper is structured as follows: Section 2 summarises the
extension to the DSL, Section 3 illustrates how the additional artifacts impacts
on the formal model of interlocking and Section 4 highlights how a scheme plan
is decomposed when it includes the additional scheme plan artifacts. Section 5
outlines the ongoing challenges for our CSP||B approach.

2 Domain Specific Model

A Domain Specification Language (DSL) description of the railway domain has
long since been proposed by Bjørner [2]. Our DSL is inspired by Bjørner and
differs from the one presented in [6] as we include the new artifacts mentioned
in Section 1.2. We believe that a DSL which is independent of a formal method
provides a basis for discussing concepts and principles without being tied to a
particular formal method.

A railway network is provided by a scheme plan SP = (Top,CT,RTs) which
is comprised of a track plan Top defining its topology; a control table CT; and
a set RTs of release tables. This paper focuses on the topology.

A track plan consists out of Units representing types of track, and Connectors
whose elements serve as glue between units. There are different kinds of units.

4 James et al.

We consider Track, Point and Crossing which are finite sets of tracks, points, and
crossings respectively, and TerminalTrack ⊆ Track. We let Unit = Track]Point]
Crossing. At this point, one can extend our DSL by further types of unit.

A track, having two endpoints, is associated with two distinct connectors; a
point, having three endpoints, is associated with three distinct connectors; and
a crossing with four distinct connectors. We write connectors(u) to denote the
set of all connectors of a unit u. For a given a unit u, a Direction d is a pair
d = (c1, c2) ∈ Connector× Connector, where c1, c2 ∈ connectors(u) and c1 6= c2.
A direction indicates that a train can travel on u from c1 to c2.

A track can be passed in one or two directions; terminal tracks have two
directions; points and crossings have up to four directions. Points also have
an orientation in the sense that movement between two specific connectors is
excluded; similarly, crossings have an orientation in the sense that their four
connectors, say c1, . . . , c4, are organised into the two branches on which a train
can travel, i.e., there are disjoint sets L = {c1, c2} and R = {c3, c4} such that
the directions of a crossing are a subset of (c1, c2), (c2, c1), (c3, c4), or (c4, c3),
i.e, either in L or in R. Points are dynamic entities which can change their
position. There are two positions a point p can be in: normal and reverse where
directions(p) = normal(p)] reverse(p).

The directions of a unit can be read as the “intended use” of the unit, which
the signal engineer provides when designing a track plan. Given a direction
d = (c1, c2) ∈ directions(u) of a unit u, we write from(d) = c1, to(d) = c2.

A path P = 〈(u1, d1), . . . , (uk , dk)〉, k ≥ 1, in a railway topology is a non-
empty sequence of units and their directions without direct repetitions: to(di) =
from(di+1) and ui 6= ui+1 for all 1 ≤ i < k . As usual, hd(P) = (u1, d1) and
last(P) = (uk , dk), and u ∈ P if u = ui for some 1 ≤ i ≤ k . When the connectors
are clear, we also write 〈u1, . . . , uk 〉 for P .

We assume a set Signal of signals, along with a labelling function signalAt :
Signal → Track × Connector × Connector indicating tracks at which signals are
placed and the direction they are facing. Each track may be labelled by at most
one signal (signals are not placed at a point or a crossing).

When track plans are decomposed open topologies are created. Therefore,
a DSL needs a notion of entry and exit tracks. Units without predecessors are
called entries, units without successors are called exits. We denote the set of
entry and exit tracks as

Entry = {(t , d) | t ∈ Track ∧ predecessor(t , d)) = ∅}
Exit = {(t , d) | t ∈ Track ∧ successor(t , d)) = ∅}

where successor(u, d) = {(u ′, d ′) | 〈(u, d)(u ′, d ′)〉 is a path} and
predecessor(u, d) = {(u ′, d ′) | 〈(u ′, d)′(u, d)〉 is a path}.

We require that there is a signal at every entry track. Without such an
entry signal, trains could unrestrictedly enter the scheme plan. This would cause
collision on the successor of an entry track.

As we deal with open railway topologies, we need to give two different def-
initions of what a (topological) route is: the first definition caters for the case

Decomposing scheme plans to manage verification complexity 5

in which the route is completely within the railway topology, while the second
definition caters for the case in which a route ends at the border of the topology.
A path r = 〈(u1, d1), . . . , (uk , dk)〉 is a topological route if one of the following
holds:

– there is a unit u0 with direction d0 such that

〈(u0, d0), (u1, d1), . . . , (uk , dk)〉

is a path in which u0 and uk−1 are labelled with signals but there are no
signals on u1, . . . , uk−2. In this case, uk is called the overlap of r ; or

– there are units u0 and uk+1 and directions d0 and dk+1 such that

〈(u0, d0), (u1, d1), . . . , (uk , dk), (uk+1, dk+1)〉

is a path, u0 is labelled with a signal, there are no signals on u1, . . . , uk , and
uk+1 is an exit track.

In both cases, we define topoUnits(r) = {(u1, d1), . . . , (uk , dk)} and topoSignal(r) =
s where signalAt(s) = (u0, d0). Finally, we let TopoRoute denote the set of all
topological routes in the railway topology, so that topoUnits : TopoRoute →
℘(Unit× Direction) and topoSignal : TopoRoute→ Signal.

3 Modelling and Verification

In earlier sections we noted our aim of introducing crossings and bi-directional
travel to our CSP‖B models. In [7] we presented how to capture bi-directional
units. Here we illustrate how the inclusion of crossings in the topology of a
scheme plan impacts on the CSP‖B modelling of the interlocking behaviour.

Additional constraints are needed in the formal model to control the access to
units which are not explicit in CTs and RTs of a scheme plan. CTs include normal
and reverse tables which govern the directions of points for particular routes and
also clear tables which govern the units that need to be clear in order to grant a
route request. The information in a RT is modelled as a function: releaseTable ∈
Track ↔ (Route × Point) that provides details of when a point can be released
when a train occupies a particular track on a route. In a CSP‖B model the set
of locked points at a given time is given by currentPointLocks ∈ Route↔ Point,
mapping route names to points. This set is updated as appropriate when a move
event occurs, i.e., when a train moves from one unit to another.

When granting a route request that includes a crossing not only do we need
to make sure that the track in the direction of travel through the crossing is clear
(e.g. (c2, c1)), we also have to make sure that the other direction of travel is not
being considered as part of another active route (c3, c4). We have modelled a
crossing as just two tracks with directions and introduced the notion of locking all
tracks on requested routes currentRouteLocks ∈ Route ↔ directedTrack , where
directedTrack ∈ Track ↔ Connector × Connector. Thus when a route request is
made the currentRouteLocks is used in the encoding of a control condition, as

6 James et al.

1 IF((signalStatus(signal(route)) = red) ∧
2 (clearTable(route) ⊆ emptyTracks)) ∧
3 ((clearTable(route) � ran(currentRouteLocks)) ⊆
4 directedClearTable(route)) THEN . . .

Fig. 1. part of control condition in route request event from Interlocking machine.

shown in Figure 1 using B notation. It ensures that a route request is granted
only when the signal for the route is red (1), all the tracks on the route are
empty (2) and there are no conflicting locks on the tracks on the route (3,4) (as
well as no lock on points — omitted here for brevity).

The set currentRouteLocks is similarly updated when a move event occurs,
but unlike currentPointLocks the relase can happen immediately after the train
has passed over the locked unit (and thus the information is not required to be
captures in a RT). Hence with the one additional locking model for routes the
CSP‖B model extends to the safe inclusion of crossings.

4 Decomposition Strategy

In this section we describe a technique for decomposing a scheme plan with a set
of smaller sub-scheme plans. The aim is that instead of having to verify the larger
scheme plan we can perform a number of smaller verifications. We consider each
unit in turn from the scheme plan and construct a zone of influence for that unit.
This means that all the ways that a unit can be influenced is captured in the zone.
Thus, the verification of each unit means that we examine the violation of the
safety properties: collision, derailment and run-through on each unit within its
zone of influence, i.e., a localised safety property. In [6] we proved that the safety
of all the sub-scheme plans implies the safety of the original scheme plan. In this
paper we introduce the extension of the decomposition technique to deal with
bi-directional units. The natural consequence of bi-directional units is that the
zones constructed as slightly larger than for those when the scheme plans were
only made up of uni-directional units. Nonetheless, each zone has the potential
to be significantly smaller than the whole scheme plan.

Let us define a localised scheme plan for a particular unit as follows: SPL =
(TopL,CTL,RTsL). The scheme plan SPL will be used to investigate safety at
units in L ⊆ Unit \ (Entry ∪ Exit).

In a first step, we consider all tracks over which a train can travel on the
topology towards a unit in L. Figure 2 provides an illustration for all notions
introduced below for a bidirectional track.

First, we give a construction that collects the tracks of L together with all
units over which a train can travel on the topology towards a track in L:

Zone(L) = {(u, d) | u ∈ Unit ∧ d ∈ directions(u) ∧
∃ path p : hd(p) ∈ Entry, last(p) ∈ L, (u, d) ∈ p}.

Decomposing scheme plans to manage verification complexity 7

(b)

l

Zo
ne

({l}
)

(a)

l
Entries({l})

Region({l})
Zo

ne
({l}

)

Fig. 2. Bi-directional influence region.

One can think of each element of L as the apex of two cones (one from each
direction of travel). Then, we define the set of all topological routes that share
a unit with L:

Routes(L) = {r ∈ TopoRoute | ∃(u, d) ∈ L : (u, d) ∈ r}

The Region of L consists of those units which are on a route directly leading
to L:

Region(L) = Zone(L) ∩ (
⋃

r∈Routes(L)

topoUnits(r))

Since we are dealing with open topologies we close the region by adding suitable
entry and exit units:

Entries(L) =
(
predecessor(Region(L)) \ Region(L)

)
∩ Zone(L)

Exits(L) = {(u, d) ∈ successor(Region(L)) \ Region(L) | ∃ r ∈ Routes(L) :
hd(r) ∈ Entries(L) ∧ (u, d) ∈ r}

where the successor and predecessor functions are applied point-wise to the set.
The ClosedRegion finally is defined as:

ClosedRegion(L) = Region(L) ∪ Entries(L) ∪ Exits(L).

With these definitions we are able to verify all closed regions of a scheme plan
are collision free which implies collision freedom of the scheme plan.

5 Conclusions

In this paper we discussed how a DSL informs our CSP‖B models. A formal
model forces clarity on the modelling assumptions that are made, e.g., points do
not move under trains. One of the modelling challenges is to have confidence in
the formal models that are defined and to ensure that the effort is not expended
on writing the model but on its verification. Thus it is essential to be able to

8 James et al.

automatically generate formal models from scheme plans that are drawn using
graphical editors. Our OnTrack tool which generates CSP‖B models is one such
example and is based on our DSL to ensure robustness. The other challenge is
to ensure scalability of the verification approach. In the paper we provided an
overview of our decomposition technique. It is important to have techniques that
are not only rigorous but have the proofs behind the techniques to justify them.
Our current work involves adapting the proofs in [6] to ensure that they remain
applicable for bi-directional units. One of our future challenges is to adapt the
CSP‖B architecture to ETCS Level 2 in the first instance.

Acknowledgement: The authors would like to thank S. Chadwick from Siemens
Rail Automation for support and feedback during the EPSRC SafeCap project.
Research partly funded by a Royal Academy of Engineering/Leverhulme Trust
Senior Research Fellowship.

References

1. European Committee for Electrotechnical Standardiazation, CENELEC EN50128,
Railway Applications - Communication, signalling and processing systems - Soft-
ware for railway cotnrol and protection systems, 2011.

2. D. Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control
and Software Engineering. In CTS. Elsevier, 2003.

3. A. Fantechi. Twenty-five years of formal methods and railways: What next? In
SEFM Workshops, volume 8368 of LNCS, pages 167–183. Springer, 2013.

4. A. Iliasov, I. Lopatkin, and A. Romanovsky. The SafeCap platform for modelling
railway safety and capacity. In SAFECOMP, volume 8153 of LNCS, 2013.

5. Y. Isobe, F. Moller, H. N. Nguyen, and M. Roggenbach. Safety and line capacity
in railways - an approach in Timed CSP. In IFM, volume 7321 of LNCS, pages
54–68. Springer, 2012.

6. P. James, F. Moller, H. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne.
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf., pages 1–27, 2014.

7. P. James, F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne,
M. Trumble, and D. M. Williams. Verification of scheme plans using CSP || B. In
SEFM Workshops, volume 8368 of LNCS, pages 189–204. Springer, 2014.

8. P. James, M. Trumble, H. Treharne, M. Roggenbach, and S. Schneider. OnTrack:
An open tooling environment for railway verification. In NASA Formal Methods,
volume 7871 of LNCS, pages 435–440. Springer, 2013.

9. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185–203, Feb. 2008.

10. F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne. Defining
and model checking abstractions of complex railway models using CSP‖B. In Haifa
Verification Conference, volume 7857 of LNCS, pages 193–208. Springer, 2012.

11. S. Schneider. Concurrent and Real-time Systems: The CSP approach. Wiley, 1999.
12. S. Schneider and H. Treharne. CSP theorems for communicating B machines.

Formal Asp. Comput., 17(4):390–422, 2005.
13. T. van Dijk, A. W. Laarman, and J. C. van de Pol. Multi-core and/or symbolic

model checking. In AVoCS 2012, volume 53 of Electronic Communications of the
EASST, pages 773:1–773:7, Berlin, 2012. EASST.

